Spectral problems for matrix ODOs (MODOs) and Picard-Vessiot Theory

Sonia L. Rueda, Polytechnical University of Madrid

DART XI. London, 9 June, 2023

I will present recent work with M.A. Zurro and E. Previato.

In Memory of Emma Previato (1952-2022)

It was a vision of E. Previato the convenience of a triple approach combining differential algebra, Picard-Vessiot extensions and representation theory to study spectral problems for commuting differential operators.

Motivation

DIFFERENTIAL OPERATORS ←⇒ ALGEBRAIC CURVES

- ODOs (scalar coefficients): Burchnall-Chaundy, Baker, Krichever...
- MODOs (matrix coefficients): Krichever, Wilson, Grinevich, Mulase...

 $\begin{array}{c} \mathsf{Direct\ problem} \implies \\ \mathsf{Inverse\ problem} & \longleftarrow \end{array}$

Contents

MODOs

Common solutions

Spectral problem

Commutative algebras of MODOs

MODOs

$$(K, \partial)$$
, constants $C = \overline{C}$ of char 0: $\mathbb{C}(x)$, $\mathbb{C}(e^x)$, $\partial = d/dx$

$$\mathcal{R}_\ell = M_\ell(K)$$
 ring of $\ell imes \ell$ matrices

Derivation D in \mathcal{R}_{ℓ} . For $A = (a_{\alpha,\beta}) \in \mathcal{R}_{\ell}$,

$$D(A) := A' = (a'_{\alpha,\beta})$$

Matrix Ordinary Differential Operators or MODOs

$$\mathcal{R}_{\ell}[D]$$

Non commutative ring DA := AD + A'

$$K[\partial] \hookrightarrow \mathcal{R}_{\ell}[D]$$
 by $\sum a_i \partial^i \mapsto \sum a_i I_{\ell} D^i$

AKNS (1974, Ablowitz, Kaup, Newell and Segur)

Previato, E. (1985). Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation. Duke Math.

$$K = \mathbb{C}\langle u, v \rangle, \, \mathcal{R}_2[D] = M_2(K)[D]$$

Stationary AKNS:
$$\frac{\imath}{2}v_{xx} + \imath v^2 u = 0$$
, $\frac{\imath}{2}u_{xx} + \imath v u^2 = 0$

$$L=\imath\begin{bmatrix}D & u\\ v & -D\end{bmatrix}=A_0+A_1D, \text{with } A_0=\imath\begin{bmatrix}0 & u\\ v & 0\end{bmatrix}, A_1=\imath\begin{bmatrix}1 & 0\\ 0 & -1\end{bmatrix}\;.$$

$$B = i \begin{bmatrix} -2D^2 - uv & -2uD - u_x \\ -2vD - v_x & 2D^2 + uv \end{bmatrix} = B_0 + B_1D + B_2D^2 ,$$

where

$$B_0 = i \begin{bmatrix} -uv & -u_x \\ -v_x & uv \end{bmatrix} , B_1 = i \begin{bmatrix} 0 & -2u \\ -2v & 0 \end{bmatrix} , B_2 = i \begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix} .$$

Spectral Problem

Given L and B in $\mathcal{R}_{\ell}[D]$

$$LY = \lambda Y$$
 , $BY = \mu Y$, $Y = (y_1, \dots, y_\ell)^t$.

for

$$L = A_0 + A_1 D$$
 and $B = \sum_{j=0}^n B_j D^j$, where $n \ge 1$,

assuming that A_1 is invertible.

$$\partial \lambda = 0$$
, $\partial \mu = 0$

$$P = L - \lambda := L - \lambda I_{\ell}$$
 and $Q = B - \mu := B - \mu I_{\ell}$

- Wilson, G. (1979). Commuting flows and conservation laws for Lax equations.
- Krichever, I. M. (1976). Algebraic curves and commuting matricial differential operators.
- Grinevich, P. G. (1987). Vector Rank of Commuting Matrix differential operators. Proof of S. P. Novikov's criterion.
- Oganesyan, V. (2019). Matrix Commuting Differential Operators of Rank 2 and Arbitrary Genus.

Contents

MODOs

Common solutions

Spectral problem

Commutative algebras of MODOs

Common solutions

We look for a necessary and sufficient condition on coefficient matrices for

$$\begin{cases} \frac{PY}{QY} = \overline{0} \\ QY = \overline{0} \end{cases}, \quad Y = (y_1, \dots, y_\ell)^t, \quad \overline{0} = (0, \dots, 0)^t, \quad (1)$$

to have a common nontrivial solution $\psi = (\psi_1, \dots, \psi_\ell)^t$, with all the ψ_i in some differential extension Σ of K.

For
$$P = A_0 + A_1 D$$
, rewrite systen $PY = \overline{0}$ as

$$DY = NY$$
 with $N = -A_1^{-1}A_0 \in \mathcal{R}_{\ell}$. (2)

 Σ Picard-Vessiot extension of K for (2).

Given a solution $\psi = (\psi_1, \dots, \psi_\ell)^t \in \Sigma^\ell$ of system (2), the derivation is defined by $D\psi = N\psi$.

$$D^j\psi=p_j(N)\psi$$
 , $j\geq 1$,

with $p_i(N)$ defined by

$$p_0(N) := I_\ell$$
, $p_i(N) := p_{i-1}(N)N + (p_{i-1}(N))'$, $j \ge 1$, (3)

For $Q = \sum_{j=0}^{n} B_j D^j$, it holds,

$$Q\psi = M(P, Q)\psi. \tag{4}$$

with M(P,Q) the $\ell \times \ell$ matrix in \mathcal{R}_{ℓ} defined by

$$M(P,Q) := \sum_{i=0}^{n} B_{i} \rho_{j}(N).$$
 (5)

Matrix differetial resultant

P and Q in $\mathcal{R}_{\ell}[D]$, with

$$\mathcal{R}_{\ell} = M_{\ell}(K), \ K^{\partial} = C = \overline{C}$$

The matrix differential resultant of P and Q, for $P=A_0+A_1D$, $|A_1|\neq 0$

$$DRes(P, Q) := \det M(P, Q). \tag{6}$$

Theorem A. The following statements hold:

- 1. If there exists a common nontrivial solution of $PY = \overline{0}$ and $QY = \overline{0}$ then DRes(P, Q) = 0.
- 2. If P and Q commute, and $\mathrm{DRes}(P,Q)=0$, then the matrix differential system $PY=\overline{0}$, $QY=\overline{0}$, has a solution $\psi\in\Sigma^{\ell}$.

Contents

Spectral problem

Back to spectral Problem

Given L and B in $\mathcal{R}_{\ell}[D]$

$$LY = \lambda Y$$
, $BY = \mu Y$, $Y = (y_1, \dots, y_\ell)^t$.

for

$$L = A_0 + A_1 D$$
 and $B = \sum_{j=0}^n B_j D^j$, where $n \ge 1$,

assuming that A_1 is invertible.

$$\partial \lambda = 0$$
, $\partial \mu = 0$

$$P = L - \lambda := L - \lambda I_{\ell}$$
 and $Q = B - \mu := B - \mu I_{\ell}$

Spectral curve

$$P = L - \lambda = (A_0 - \lambda I_\ell) + A_1 D, \quad Q = B - \mu = (B_0 - \mu I_\ell) + \sum_{i=1}^n B_i D^i.$$

$$f(\lambda, \mu) = \text{DRes}(L - \lambda, B - \mu) = \det M(L - \lambda, B - \mu)$$

is a polynomial in $K[\lambda, \mu]$

$$f(\lambda,\mu) = (-1)^{\ell} \mu^{\ell} + \det(B_n) \det(A_1^{-1})^n \lambda^{n\ell} + q(\lambda,\mu),$$

Theorem B. If L and B commute then

$$f(\lambda, \mu)$$
 is a polynomial in $C[\lambda, \mu]$.

The spectral curve of the pair L, B.

$$\Gamma = \{(\lambda, \mu) \in C^2 \mid f(\lambda, \mu) = 0\}.$$

Apply Theorem A to $P = L - \lambda$ and $Q = B - \mu$ whose matrix coefficients have entries in $\mathcal{F} = K(\lambda, \mu)$.

 $\overline{\mathcal{F}}$ algebraic closure, $\mathcal{C} = \overline{\mathcal{C}}$ its field of constants

 \mathcal{E} Picard-Vessiot extension of $\overline{\mathcal{F}}$ for

$$DY = N_{\lambda}Y \quad \text{ with } \ N_{\lambda} = -A_1^{-1}(A_0 - \lambda I_{\ell}) \in M_{\ell}(\overline{\mathcal{F}}).$$

equivalent to

$$(L-\lambda)Y=0$$
 with $L=A_0+A_1D$

Proof of Theorem B.

We consider Ψ_{λ} a fundamental matrix satisfying $(L - \lambda)Y = 0$. Then

$$(B-\mu)(\Psi_{\lambda})=\Psi_{\lambda}\cdot\Delta\ ,$$

for some matrix Δ with entries in C. On the other hand,

$$(B-\mu)(\Psi_{\lambda})=M(L-\lambda,B-\mu)\Psi_{\lambda}.$$

thus

$$DRes(L - \lambda, B - \mu) = \det M(L - \lambda, B - \mu) = \det(\Delta),$$

is a polynomial in

$$K[\lambda, \mu] \cap C = C[\lambda, \mu].$$

Corollary. Let $P = (\lambda_0, \mu_0) \in C^2$. The spectral problem

$$LY = \lambda_0 Y$$
 , $BY = \mu_0 Y$.

has a nontrivial solution if and only if f(P) = 0,

P is a point on the spectral curve Γ defined by

$$f(\lambda, \mu) = DRes(L - \lambda, B - \mu).$$

A common solution ψ belongs to Σ_0^{ℓ} , where Σ_0 is a Picard-Vessiot extension for the linear differential system

$$DY = N_{\lambda_0} Y$$
 with $N_{\lambda_0} = -A_1^{-1}(A_0 - \lambda_0 I_\ell)$.

Back to AKNS

$$L = i \begin{bmatrix} D & u \\ v & -D \end{bmatrix} = A_0 + A_1 D,$$

$$B = i \begin{bmatrix} -2D^2 - uv & -2uD - u_x \\ -2vD - v_x & 2D^2 + uv \end{bmatrix} = B_0 + B_1 D + B_2 D^2,$$

u and v are solutions of the stationary AKNS system, complexified non-linear stationary Schrödinger (NLS) system where v is the complex conjugate of u,

$$u'' + 2u^2v = 0 \quad , \quad v'' + 2v^2u = 0 \ . \tag{7}$$

L and B commute. Zero order operator

$$[L,B] = \begin{bmatrix} 0 & -u'' - 2u^2v \\ v'' + 2v^2u & 0 \end{bmatrix},$$
 (8)

Back to AKNS

$$N_{\lambda} = -A_{1}^{-1}(A_{0} - \lambda I_{2})$$

$$M(L - \lambda, B - \mu) = B_{0} - \mu I_{2} + B_{1}N_{\lambda} + B_{2}(N_{\lambda}^{2} + N_{\lambda}') =$$

$$= \begin{bmatrix} -\imath uv + 2\imath\lambda^{2} - \mu & \imath u' + 2u\lambda \\ \imath v' - 2\nu\lambda & \imath uv - 2\imath\lambda^{2} - \mu \end{bmatrix}.$$

$$f(\lambda, \mu) = \text{DRes}(L - \lambda, B - \mu) = \mu^2 + 4\lambda^4 + I_0\lambda + I_1$$
 (9)

 $I_0 = u^2 v^2 + v' u'$ and $I_1 = -2 i v' u + 2 i u' v$ first integrals of the NLS equation,

$$I_0' = 2uu'v^2 + 2u^2vv' + v''u' + vu'' = 0$$
, $I_1' = -2\imath v''u + 2\imath u''v = 0$.

(9) defines the spectral curve Γ in \mathbb{C}^2 .

Example 1: Irreducible curve

$$K=\mathbb{C}(e^{2\imath x})$$
 and NLS potentials $u(x)=e^{-2\imath x}$, $v(x)=2e^{2\imath x}$,

$$L = i \begin{bmatrix} D & e^{-2ix} \\ 2e^{2ix} & -D \end{bmatrix}, B = i \begin{bmatrix} -2D^2 - 2 & -2e^{-2ix}D + 2ie^{-2ix} \\ -4e^{2ix}D - 4ie^{2ix} & 2D^2 + 2 \end{bmatrix}$$

The spectral curve Γ is an irreducible singular curve defined by

$$f(\lambda, \mu) = \mu^2 + 4(\lambda + 1)^2(\lambda^2 - 2\lambda + 3) = 0$$

Example 2: Reducible curve

 $K = \mathbb{C}(x)$ and NLS potentials u(x) = x and v(x) = 0. The spectral curve Γ defined by

$$f(\lambda,\mu) = \mu^2 + 4\lambda^4 = 0$$

has two irreducible components defined by

$$h_1(\lambda,\mu) = \mu - 2i\lambda^2 = 0$$
 and $h_2(\lambda,\mu) = \mu + 2i\lambda^2 = 0$

Contents

Commutative algebras of MODOs

We establish a morphism of rings

$$\rho: C[\lambda,\mu] \longrightarrow C[L,B] := \left\{ \sum a_{i,j} L^i B^j \mid a_{i,j} \in C \right\} \subset \mathcal{R}_{\ell}[D],$$

defined by $\rho(c) = cI_{\ell}$, for every $c \in C$,

$$\lambda \mapsto L$$
 and $\mu \mapsto B$.

Given $g \in C[\lambda, \mu]$

$$g(L,B) := \rho(g)$$

 $g \in C[\lambda,\mu]$ is a Burchnall-Chaundy (BC) polynomial of the pair L,B if

$$g(L,B)=\mathbf{0}.$$

BC ideal

We call Burchnall-Chaundy (BC) ideal of the pair L,B to the non zero ideal in $C[\lambda,\mu]$ defined as

$$BC(L, B) = Ker(\rho) = \{g \in C[\lambda, \mu] \mid g(L, B) = \mathbf{0}\}.$$

$$\frac{C[\lambda,\mu]}{\mathrm{BC}(L,B)} \simeq C[L,B].$$

BC ideal

Given commuting MODOs L and B in $\mathcal{R}_{\ell}[D]$, we assume that L has order 1, with invertible leading coefficient.

$$f(\lambda, \mu) = D\text{Res}(L - \lambda, B - \mu) \text{ in } C[\lambda, \mu]$$

Theorem Then $f(L, B)(\Psi_{\lambda}) = \mathbf{0}$, for any fundamental matrix Ψ_{λ} of the system $LY = \lambda Y$.

 (K, ∂) , constants $C = \overline{C}$ of char 0:

Conjecture $f(L, B) = \mathbf{0}$.

It holds in AKNS and [Grinevich] with coefficients in $M_{\ell}(\mathbb{C}\{x\})$, $\mathbb{C}\{x\}$ ring of convergent power series.

Classification of algebras

Decomposition of

$$f(\lambda, \mu) = DRes(L - \lambda, B - \mu)$$

in irreducible factors

$$f=h_1^{\sigma_1}\cdots h_s^{\sigma_s}$$

Theorem C. Let us assume $f(L, B) = \mathbf{0}$. There exists a polynomial $F = h_1^{r_1} \cdots h_s^{r_s}$ that divides f such that BC(L, B) = (F). Furthermore

$$C[L,B] \simeq \frac{C[\lambda,\mu]}{(h_1^{r_1})} \times \cdots \times \frac{C[\lambda,\mu]}{(h_s^{r_s})},$$

whose ring structure is componentwise addition and multiplication.

Algorithm BC-generator

Given commuting MODOs L and B in $\mathcal{R}_{\ell}[D]$, with L of order one and invertible leading coefficient, return a polynomial $F \in C[\lambda, \mu]$

$$BC(L, B) = (F).$$

1. Compute the differential resultant

$$f(\lambda, \mu) = DRes(L - \lambda, B - \mu)$$

- 2. If $f(L, B) = \mathbf{0}$ then factor f to obtain $h_1^{\sigma_1} \cdots h_s^{\sigma_s}$, each h_i irreducible in $C[\lambda, \mu]$.
- 3. For each i = 1, ..., s, compute the minimal integer r_i , with $0 \le r_i \le \sigma_i$, such that

$$\prod_i h_i(L,B)^{r_i} = \mathbf{0}.$$

4. Return $F = h_1^{r_1} \cdots h_s^{r_s}$.

$$\ell = 2$$

Theorem Let us consider commuting MODOs L and B in $\mathcal{R}_2[D]$, with L of order one and invertible leading coefficient. If $B \notin C[L]$ and $f(L, B) = \mathbf{0}$ then

$$BC(L, B) = (f).$$

Classification of algebras C[L, B] for MODOs of size $\ell = 2$:

- If f has one irreducible component then $C[L, B] \simeq C[\lambda, \mu]/(f)$;
- If $f = h_1 \cdot h_2$ then $C[L, B] \simeq C[\lambda, \mu]/(h_1) \times C[\lambda, \mu]/(h_2)$.

Example 1: Irreducible curve

 $K = \mathbb{C}(e^{2\imath x})$ and NLS potentials $u(x) = e^{-2\imath x}$, $v(x) = 2e^{2\imath x}$, The spectral curve Γ is an irreducible singular curve defined by

$$f(\lambda, \mu) = \mu^2 + 4(\lambda + 1)^2(\lambda^2 - 2\lambda + 3) = 0$$

Example 2: Reducible curve

 $K = \mathbb{C}(x)$ and NLS potentials u(x) = x and v(x) = 0. The spectral curve Γ defined by

$$f(\lambda, \mu) = \mu^2 + 4\lambda^4 = h_1 h_2 = 0$$

 $h_1(L,B) \neq {\bf 0} \text{ and } h_2(L,B) \neq {\bf 0}$.

$$C[L, B] \simeq C[\lambda, \mu]/(h_1) \times C[\lambda, \mu]/(h_2)$$

$\ell=2$: Space of common solutions

Let $P=(\lambda_0,\mu_0)$ be on the curve Γ with $\mu_0 \neq 0$. Let Σ_0 be a Picard-Vessiot field for the system $DY=N_{\lambda_0}Y$. $B-\mu_0$ restricted to the kernel of $L-\lambda_0$ gives

$$(B-\mu_0)\psi=M(L-\lambda_0,B-\mu_0)\psi.$$

$$\xi: \Sigma_0^2 \to \Sigma_0^2 , \ \xi(\psi) := M(L - \lambda_0, B - \mu_0)\psi,$$

has a nontrivial kernel \mathcal{L} ,

$$\mathcal{L} = \{ (\psi_1, \psi_2) \in \Sigma_0^2 \mid (-\imath u v + 2 \imath \lambda_0^2 - \mu_0) \psi_1 + (\imath u' + 2 u \lambda_0) \psi_2 = 0 \}$$

(rank 1) fiber bundle over Γ ,

$$\phi = -\frac{-\imath u v + 2\imath \lambda_0^2 - \mu_0}{\imath u' + 2\imath \lambda_0} = \frac{\psi_2}{\psi_1}$$

satisfies the Riccati-type equation $\phi' - u\phi^2 - 2\imath\lambda\phi - v = 0$, since

$$\phi' - u\phi^2 - 2\imath\lambda\phi - v = -u \cdot f(\lambda, \mu) = 0.$$

Example 1: Irreducible curve

 $K = \mathbb{C}(e^{2\imath x})$ and NLS potentials $u(x) = e^{-2\imath x}$, $v(x) = 2e^{2\imath x}$, The spectral curve Γ is an irreducible singular curve defined by

$$f(\lambda, \mu) = \mu^2 + 4(\lambda + 1)^2(\lambda^2 - 2\lambda + 3) = 0$$

The common solution of the coupled spectral problem at a nonbranching point P is

$$\Psi = \begin{pmatrix} 1 \\ \phi \end{pmatrix} \text{ with } \phi = -\frac{-2\imath + 2\imath \lambda_0^2 - \mu}{2 + 2\lambda_0} \cdot e^{2\imath x} .$$

Example 2: Reducible curve

 $K = \mathbb{C}(x)$ and NLS potentials u(x) = x and v(x) = 0. The spectral curve Γ defined by

$$f(\lambda, \mu) = \mu^2 + 4\lambda^4 = h_1h_2 = 0$$

$$\Psi = \begin{pmatrix} 1 \\ \phi \end{pmatrix} \text{ with } \phi = -\frac{2i\lambda_0^2 - \mu_0}{i + 2x\lambda_0}.$$

Available at

Previato, E., Rueda, S. L., Zurro, M. A. (2023).

Burchnall-Chaundy polynomials for matrix ODOs and
Picard-Vessiot Theory.
arXiv preprint arXiv:2210.02788.

To appear in Physica D: Nonlinear Phenomena.

Partially supported by the grant PID2021-124473NB-I00, Algorithmic Differential Algebra and Integrability (ADAI) from the Spanish MICINN.