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In Memory of Emma Previato (1952-2022)

It was a vision of E. Previato the convenience of a triple approach
combining differential algebra, Picard-Vessiot extensions and
representation theory to study spectral problems for commuting
differential operators.
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Motivation

DIFFERENTIAL OPERATORS ⇐⇒ ALGEBRAIC CURVES

• ODOs (scalar coefficients): Burchnall-Chaundy, Baker,
Krichever...

• MODOs (matrix coefficients): Krichever, Wilson, Grinevich,
Mulase...

Direct problem =⇒
Inverse problem ⇐=
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MODOs

(K , ∂), constants C = C of char 0: C(x), C(ex), ∂ = d/dx

Rℓ = Mℓ(K ) ring of ℓ× ℓ matrices

Derivation D in Rℓ. For A = (aα,β) ∈ Rℓ,

D(A) := A′ = (a′α,β)

Matrix Ordinary Differential Operators or MODOs

Rℓ[D]

Non commutative ring DA := AD + A′

K [∂] ↪→ Rℓ[D] by
∑

ai∂
i 7→

∑
ai IℓD

i
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AKNS (1974, Ablowitz, Kaup, Newell and Segur)
Previato, E. (1985). Hyperelliptic quasi-periodic and soliton
solutions of the nonlinear Schrödinger equation. Duke Math.

K = C⟨u, v⟩, R2[D] = M2(K )[D]

Stationary AKNS:
ı

2
vxx + ıv2u = 0,

ı

2
uxx + ıvu2 = 0

L = ı

[
D u
v −D

]
= A0+A1D,with A0 = ı

[
0 u
v 0

]
,A1 = ı

[
1 0
0 −1

]
.

B = ı

[
−2D2 − uv −2uD − ux
−2vD − vx 2D2 + uv

]
= B0 + B1D + B2D

2 ,

where

B0 = ı

[
−uv −ux
−vx uv

]
, B1 = ı

[
0 −2u

−2v 0

]
, B2 = ı

[
−2 0
0 2

]
.
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Spectral Problem

Given L and B in Rℓ[D]

LY = λY , BY = µY , Y = (y1, . . . , yℓ)
t .

for

L = A0 + A1D and B =
n∑

j=0

BjD
j , where n ≥ 1 ,

assuming that A1 is invertible.

∂λ = 0, ∂µ = 0

P = L− λ := L− λIℓ and Q = B − µ := B − µIℓ



MODOs Common solutions Spectral problem Commutative algebras of MODOs

• Wilson, G. (1979). Commuting flows and conservation laws
for Lax equations.

• Krichever, I. M. (1976). Algebraic curves and commuting
matricial differential operators.

• Grinevich, P. G. (1987). Vector Rank of Commuting Matrix
differential operators. Proof of S. P. Novikov’s criterion.

• Oganesyan, V. (2019). Matrix Commuting Differential
Operators of Rank 2 and Arbitrary Genus.
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Common solutions

We look for a necessary and sufficient condition on coefficient
matrices for{

PY = 0
QY = 0

, Y = (y1, . . . , yℓ)
t , 0 = (0, . . . , 0)t , (1)

to have a common nontrivial solution ψ = (ψ1, . . . , ψℓ)
t , with all

the ψi in some differential extension Σ of K .

For P = A0 + A1D, rewrite systen PY = 0 as

DY = NY with N = −A−1
1 A0 ∈ Rℓ. (2)

Σ Picard-Vessiot extension of K for (2).
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Given a solution ψ = (ψ1, . . . , ψℓ)
t ∈ Σℓ of system (2), the

derivation is defined by Dψ = Nψ.

D jψ = pj(N)ψ , j ≥ 1,

with pj(N) defined by

p0(N) := Iℓ , pj(N) := pj−1(N)N + (pj−1(N))′ , j ≥ 1, (3)

For Q =
∑n

j=0 BjD
j , it holds,

Qψ = M(P,Q)ψ. (4)

with M(P,Q) the ℓ× ℓ matrix in Rℓ defined by

M(P,Q) :=
n∑

j=0

Bjpj(N). (5)
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Matrix differetial resultant

P and Q in Rℓ[D], with

Rℓ = Mℓ(K ), K∂ = C = C

The matrix differential resultant of P and Q, for
P = A0 + A1D, |A1| ≠ 0

DRes(P,Q) := detM(P,Q). (6)

Theorem A. The following statements hold:

1. If there exists a common nontrivial solution of PY = 0 and
QY = 0 then DRes(P,Q) = 0.

2. If P and Q commute, and DRes(P,Q) = 0, then the matrix
differential system PY = 0 , QY = 0, has a solution ψ ∈ Σℓ.
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Back to spectral Problem

Given L and B in Rℓ[D]

LY = λY , BY = µY , Y = (y1, . . . , yℓ)
t .

for

L = A0 + A1D and B =
n∑

j=0

BjD
j , where n ≥ 1 ,

assuming that A1 is invertible.

∂λ = 0, ∂µ = 0

P = L− λ := L− λIℓ and Q = B − µ := B − µIℓ
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Spectral curve

P = L− λ = (A0−λIℓ)+A1D, Q = B − µ = (B0−µIℓ)+
n∑

j=1

BjD
j .

f (λ, µ) = DRes(L− λ,B − µ) = detM(L− λ,B − µ)

is a polynomial in K [λ, µ]

f (λ, µ) = (−1)ℓµℓ + det(Bn) det(A
−1
1 )nλnℓ + q(λ, µ),

Theorem B. If L and B commute then

f (λ, µ) is a polynomial in C [λ, µ].

The spectral curve of the pair L,B.

Γ = {(λ, µ) ∈ C 2 | f (λ, µ) = 0}.
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Coupled spectral problem

Apply Theorem A to P = L− λ and Q = B − µ whose matrix
coefficients have entries in F = K (λ, µ).

F algebraic closure, C = C its field of constants

E Picard-Vessiot extension of F for

DY = NλY with Nλ = −A−1
1 (A0 − λIℓ) ∈ Mℓ(F).

equivalent to

(L− λ)Y = 0 with L = A0 + A1D
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Proof of Theorem B.
We consider Ψλ a fundamental matrix satisfying (L− λ)Y = 0.
Then

(B − µ)(Ψλ) = Ψλ ·∆ ,

for some matrix ∆ with entries in C. On the other hand,

(B − µ)(Ψλ) = M(L− λ,B − µ)Ψλ.

thus

DRes(L− λ,B − µ) = detM(L− λ,B − µ) = det(∆),

is a polynomial in
K [λ, µ] ∩ C = C [λ, µ].
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Corollary. Let P = (λ0, µ0) ∈ C 2. The spectral problem

LY = λ0Y , BY = µ0Y .

has a nontrivial solution if and only if f (P) = 0,

P is a point on the spectral curve Γ defined by

f (λ, µ) = DRes(L− λ,B − µ).

A common solution ψ belongs to Σ0
ℓ, where Σ0 is a Picard-Vessiot

extension for the linear differential system

DY = Nλ0Y with Nλ0 = −A−1
1 (A0 − λ0Iℓ).
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Back to AKNS

L = ı

[
D u
v −D

]
= A0 + A1D,

B = ı

[
−2D2 − uv −2uD − ux
−2vD − vx 2D2 + uv

]
= B0 + B1D + B2D

2 ,

u and v are solutions of the stationary AKNS system, complexified
non-linear stationary Schrödinger (NLS) system where v is the
complex conjugate of u,

u′′ + 2u2v = 0 , v ′′ + 2v2u = 0 . (7)

L and B commute. Zero order operator

[L,B] =

[
0 −u′′ − 2u2v

v ′′ + 2v2u 0

]
, (8)
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Back to AKNS

Nλ = −A−1
1 (A0 − λI2)

M(L− λ,B − µ) = B0 − µI2 + B1Nλ + B2(N
2
λ + N ′

λ) =

=

[
−ıuv + 2 ıλ2 − µ ıu′ + 2 uλ

ıv ′ − 2 vλ ıuv − 2 ıλ2 − µ

]
.

f (λ, µ) = DRes(L− λ,B − µ) = µ2 + 4λ4 + I0λ+ I1 (9)

I0 = u2v2 + v ′u′ and I1 = −2 iv ′u + 2 iu′v first integrals of the
NLS equation,

I ′0 = 2uu′v2+2u2vv ′+ v ′′u′+ vu′′ = 0 , I ′1 = −2ıv ′′u+2ıu′′v = 0.

(9) defines the spectral curve Γ in C2.
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Example 1: Irreducible curve
K = C(e2ıx) and NLS potentials u(x) = e−2ıx , v(x) = 2e2ıx ,

L = ı

[
D e−2ıx

2e2ıx −D

]
, B = ı

[
−2D2 − 2 −2e−2ıxD + 2ıe−2ıx

−4e2ıxD − 4ıe2ıx 2D2 + 2

]
The spectral curve Γ is an irreducible singular curve defined by

f (λ, µ) = µ2 + 4(λ+ 1)2(λ2 − 2λ+ 3) = 0

Example 2: Reducible curve
K = C(x) and NLS potentials u(x) = x and v(x) = 0.
The spectral curve Γ defined by

f (λ, µ) = µ2 + 4λ4 = 0

has two irreducible components defined by

h1(λ, µ) = µ− 2iλ2 = 0 and h2(λ, µ) = µ+ 2iλ2 = 0
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BC polynomials

We establish a morphism of rings

ρ : C [λ, µ] −→ C [L,B] :=
{∑

ai ,jL
iB j | ai ,j ∈ C

}
⊂ Rℓ[D],

defined by ρ(c) = cIℓ, for every c ∈ C ,

λ 7→ L and µ 7→ B.

Given g ∈ C [λ, µ]
g(L,B) := ρ(g)

g ∈ C [λ, µ] is a Burchnall-Chaundy (BC) polynomial of the
pair L,B if

g(L,B) = 0.
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BC ideal

We call Burchnall-Chaundy (BC) ideal of the pair L,B to the
non zero ideal in C [λ, µ] defined as

BC(L,B) = Ker(ρ) = {g ∈ C [λ, µ] | g(L,B) = 0}.

C [λ, µ]

BC(L,B)
≃ C [L,B].
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BC ideal

Given commuting MODOs L and B in Rℓ[D], we assume that L
has order 1, with invertible leading coefficient.

f (λ, µ) = DRes(L− λ,B − µ) in C [λ, µ]

Theorem Then f (L,B)(Ψλ) = 0, for any fundamental matrix Ψλ

of the system LY = λY .

(K , ∂), constants C = C of char 0:

Conjecture f (L,B) = 0.

It holds in AKNS and [Grinevich] with coefficients in Mℓ(C{x}),
C{x} ring of convergent power series.
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Classification of algebras

Decomposition of

f (λ, µ) = DRes(L− λ,B − µ)

in irreducible factors

f = hσ1
1 · · · hσs

s

Theorem C. Let us assume f (L,B) = 0. There exists a
polynomial F = hr11 · · · hrss that divides f such that BC(L,B) = (F ).
Furthermore

C [L,B] ≃ C [λ, µ]

(hr11 )
× · · · × C [λ, µ]

(hrss )
,

whose ring structure is componentwise addition and multiplication.
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Algorithm BC-generator
Given commuting MODOs L and B in Rℓ[D], with L of order one
and invertible leading coefficient, return a polynomial F ∈ C [λ, µ]

BC(L,B) = (F ).

1. Compute the differential resultant

f (λ, µ) = DRes(L− λ,B − µ)

2. If f (L,B) = 0 then factor f to obtain hσ1
1 · · · hσs

s , each hi
irreducible in C [λ, µ].

3. For each i = 1, . . . , s, compute the minimal integer ri , with
0 ≤ ri ≤ σi , such that∏

i

hi (L,B)
ri = 0.

4. Return F = hr11 · · · hrss .
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ℓ = 2

Theorem Let us consider commuting MODOs L and B in R2[D],
with L of order one and invertible leading coefficient. If B /∈ C [L]
and f (L,B) = 0 then

BC(L,B) = (f ).

Classification of algebras C [L,B] for MODOs of size ℓ = 2:

• If f has one irreducible component then
C [L,B] ≃ C [λ, µ]/(f );

• If f = h1 · h2 then C [L,B] ≃ C [λ, µ]/(h1)× C [λ, µ]/(h2).
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f (L,B) = 0 and BC(L,B) = (f )

Example 1: Irreducible curve
K = C(e2ıx) and NLS potentials u(x) = e−2ıx , v(x) = 2e2ıx ,
The spectral curve Γ is an irreducible singular curve defined by

f (λ, µ) = µ2 + 4(λ+ 1)2(λ2 − 2λ+ 3) = 0

Example 2: Reducible curve
K = C(x) and NLS potentials u(x) = x and v(x) = 0.
The spectral curve Γ defined by

f (λ, µ) = µ2 + 4λ4 = h1h2 = 0

h1(L,B) ̸= 0 and h2(L,B) ̸= 0 .

C [L,B] ≃ C [λ, µ]/(h1)× C [λ, µ]/(h2)
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ℓ = 2: Space of common solutions
Let P = (λ0, µ0) be on the curve Γ with µ0 ̸= 0. Let Σ0 be a
Picard-Vessiot field for the system DY = Nλ0Y .
B − µ0 restricted to the kernel of L− λ0 gives

(B − µ0)ψ = M(L− λ0,B − µ0)ψ .

ξ : Σ2
0 → Σ2

0 , ξ(ψ) := M(L− λ0,B − µ0)ψ,

has a nontrivial kernel L,

L =
{
(ψ1, ψ2) ∈ Σ2

0 |
(
−ıuv + 2 ıλ0

2 − µ0
)
ψ1 +

(
ıu′ + 2 uλ0

)
ψ2 = 0

}
.

(rank 1) fiber bundle over Γ,

ϕ = −−ıuv + 2 ıλ0
2 − µ0

ıu′ + 2 uλ0
=
ψ2

ψ1

satisfies the Riccati-type equation ϕ′ − uϕ2 − 2ıλϕ− v = 0, since

ϕ′ − uϕ2 − 2ıλϕ− v = −u · f (λ, µ) = 0 .
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Example 1: Irreducible curve
K = C(e2ıx) and NLS potentials u(x) = e−2ıx , v(x) = 2e2ıx ,
The spectral curve Γ is an irreducible singular curve defined by

f (λ, µ) = µ2 + 4(λ+ 1)2(λ2 − 2λ+ 3) = 0

The common solution of the coupled spectral problem at a
nonbranching point P is

Ψ =

(
1
ϕ

)
with ϕ = −−2ı+ 2ıλ20 − µ

2 + 2λ0
· e2ıx .

Example 2: Reducible curve
K = C(x) and NLS potentials u(x) = x and v(x) = 0.
The spectral curve Γ defined by

f (λ, µ) = µ2 + 4λ4 = h1h2 = 0

Ψ =

(
1
ϕ

)
with ϕ = −2iλ20 − µ0

i + 2xλ0
.
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Thank you

for your attention !
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