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| will present recent work
with M.A. Zurro and E. Previato.
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In Memory of Emma Previato (1952-2022)

It was a vision of E. Previato the convenience of a triple approach
combining differential algebra, Picard-Vessiot extensions and
representation theory to study spectral problems for commuting
differential operators.
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DIFFERENTIAL OPERATORS <= ALGEBRAIC CURVES
® ODOs (scalar coefficients): Burchnall-Chaundy, Baker,
Krichever...

¢ MODOs (matrix coefficients): Krichever, Wilson, Grinevich,
Mulase...

Direct problem —

Inverse problem <=



Contents

MODOs

Common solutions

Spectral problem

Commutative algebras of MODOs

«Or «Fr o«

nae



MODOs Common solutions Spectral problem Commutative algebras of MODOs
0e000 0000 000000000 000000000000

MODOs
(K,d), constants C = C of char 0: C(x), C(e¥), 9 = d/dx
Re = My(K) ring of £ x ¢ matrices
Derivation D in Ry. For A= (as,3) € R,
D(A) == A" = (a, 5)
Matrix Ordinary Differential Operators or MODOs

R4[D]

Non commutative ring DA := AD + A’
K[@] — R([D] by Z a,-@i — Z a,'/gDi
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AKNS (1974, Ablowitz, Kaup, Newell and Segur)

Previato, E. (1985). Hyperelliptic quasi-periodic and soliton
solutions of the nonlinear Schrodinger equation. Duke Math.

K = C(u,v), R2[D] = Ma(K)[D]

Stationary AKNS: %vxx +2u =0, %uxx +av® =0

D u . 0 u 1 0
L:z[v _D]:Ao—l-AlD,WlthAo—z[v 0],%\1—2[0 _1].

—2D% —yv  —2uD — uy

B=1 |:—2VD— v 2D%+ uv

}:Bo+310+5202,

where
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Spectral Problem

Given L and B in Ry[D]

LY =)\Y , BY=uY , Y=01....y)"
for
L=Ao+AD and B=> BiD/, wheren>1,

Jj=0

assuming that Aj is invertible.
ON=0,0u=0
P=L-X=L—-Xyand Q=B —p:=B—pul
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e Wilson, G. (1979). Commuting flows and conservation laws
for Lax equations.

e Krichever, I. M. (1976). Algebraic curves and commuting
matricial differential operators.

® Grinevich, P. G. (1987). Vector Rank of Commuting Matrix
differential operators. Proof of S. P. Novikov's criterion.

® Oganesyan, V. (2019). Matrix Commuting Differential
Operators of Rank 2 and Arbitrary Genus.
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Common solutions

We look for a necessary and sufficient condition on coefficient
matrices for

PY =0 =
{QY:O ’ Y:(ylw"?y@)t’ 0:(07""0)t’ (1)

to have a common nontrivial solution ¥ = (11, ...,1y)", with all
the v); in some differential extension ¥ of K.

For P = Ag + A1 D, rewrite systen PY =0 as
DY = NY with N=—A1A; € Ry. (2)

Y. Picard-Vessiot extension of K for (2).
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Given a solution ¥ = (v1,...,9,)t € £’ of system (2), the
derivation is defined by Dy = Na.

Dy =pi(N)y , j=1,
with p;(N) defined by
po(N) :=1lp,  pi(N) = pi-1(N)N + (pj-2(N))", j=>1,
For @ = 20 B;DY, it holds,
Qv = M(P, Q).

with M(P, Q) the ¢ x ¢ matrix in Ry defined by

M(P,Q) =Y Bipj(N).
Jj=0
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Matrix differetial resultant

P and Q in Ry[D], with
Re=My(K), K?=C=C

The matrix differential resultant of P and Q, for
P=Ay+ AiD, |A1| #0

DRes(P, Q) := det M(P, Q). (6)

Theorem A. The following statements hold:
1. If there exists a common nontrivial solution of PY =0 and
QY =0 then DRes(P, Q) = 0.
2. If P and Q@ commute, and DRes(P, Q) = 0, then the matrix
differential system PY =0, QY =0, has a solution ) € ¥*.
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Back to spectral Problem

Given L and B in Ry[D]

LY =)\Y , BY=uY , Y=01....y)"
for
L=Ao+AD and B=> BiD/, wheren>1,

Jj=0

assuming that Aj is invertible.
ON=0,0u=0
P=L-X=L—-Xyand Q=B —p:=B—pul
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Spectral curve

P=L—X\=(A—M)+AD, Q=B—p=(Bo—pl)+» BiD.
j=1

f(A,u) =DRes(L —\,B —pu) =det M(L— X\, B — )
is a polynomial in K[\, p]
F(\ 1) = (~1)' "+ det(By) det(AT))"A™ + q(A, ),
Theorem B. [/f L and B commute then
f(\, ) is a polynomial in C[\, p].

The spectral curve of the pair L, B.

M={(\u)eC?|f(\p) =0}
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Coupled spectral problem

Apply Theorem Ato P=L — X and Q@ = B — i whose matrix
coefficients have entries in F = K(\, p).

F algebraic closure, C = C its field of constants
€ Picard-Vessiot extension of F for

DY = Ny Y  with Ny = —A7 Ay — Alp) € My(F).

equivalent to

(L=A\)Y =0 with L = Ag + A D
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Proof of Theorem B.

We consider W a fundamental matrix satisfying (L — A\)Y = 0.

Then
(B - M)(\U/\) = \U)\ -A )

for some matrix A with entries in C. On the other hand,
(B = p)(Wx) = M(L= X, B—p)Vy.
thus
DRes(L — A\, B — p) =det M(L — A\, B — ) = det(A),

is a polynomial in
KA, u] N C = C[A .

O
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Corollary. Let P = ()Xo, s1g) € C2. The spectral problem
LY =X Y , BY =Y.

has a nontrivial solution if and only if f(P) =0,

P is a point on the spectral curve I defined by

f(\, 1) = DRes(L — A, B — p).

A common solution v belongs to ¥of, where ¥ is a Picard-Vessiot
extension for the linear differential system

DY = Ny Y  with Ny, = —A7 (Ao — \oh).
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Back to AKNS

D
L=1 [V _“D} = Ao + A1 D,

—2D% —uv  —2uD — uy 5
B_z[_sz_VX 2D2+uv}_Bo+BlD+BzD,

u and v are solutions of the stationary AKNS system, complexified
non-linear stationary Schrodinger (NLS) system where v is the

complex conjugate of u,

' +20v=0 , V' +2%u=0. (7)

L and B commute. Zero order operator

0 —u" —2u2v
(8)

[L.B] = v 4+ 2v2u 0 ’
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Back to AKNS

Ny = —A7 (Ao — \h)
M(L — X, B — ) = By — ph + By Ny + By(N3 + Nj) =
—uv 421N — w' +2u)

w —2vA wv — 2102 — |

f(\ ) =DRes(L—\,B—p)=p?> +4\ + A+ h  (9)

lo = t>v? 4+ V/v/ and b = —2iv'u+ 2iu'v first integrals of the
NLS equation,

1§ =2ud' v 4 2uPwW +V'd v =0, If = —20" u+ 2" v = 0.

(9) defines the spectral curve I in C2.
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Example 1: Irreducible curve
K = C(e**) and NLS potentials u(x) = e=2*, v(x) = 2%,

[ —, D e B_, —2D%? -2 —2e72XD 4 e~ X
T |2ex D | —4e2XD — 442 2D? 4+ 2

The spectral curve I is an irreducible singular curve defined by
fFOup) =2 +4A+1)2(A2 =20 +3)=0
Example 2: Reducible curve
K = C(x) and NLS potentials u(x) = x and v(x) = 0.
The spectral curve ' defined by
fFOp) =p? +4X* =0
has two irreducible components defined by

hi( A ) = o —2id2 =0 and ha(\, 1) = p+2iA%> =0
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BC polynomials

We establish a morphism of rings
p: CI\p] —s CIL, B] == {Za;JLiBj | aij € C} c R[D],
defined by p(c) = cly, for every c € C,

A+ L and p— B.

Given g € C[\, y]
g(L,B) := p(g)
g € C[\, p] is a Burchnall-Chaundy (BC) polynomial of the
pair L, B if
g(L,B)=0.
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BC ideal

We call Burchnall-Chaundy (BC) ideal of the pair L, B to the
non zero ideal in C[\, ] defined as

BC(L, B) = Ker(p) = {g € C[\, ] | g(L, B) = 0}.

CA, ]

BC(L, B) ~ CI[L, B].
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BC ideal

Given commuting MODOs L and B in Ry[D], we assume that L
has order 1, with invertible leading coefficient.
f(A, ) =DRes(L — X\, B — ) in C[\, p]

Theorem Then f(L, B)(Vy) = 0, for any fundamental matrix W
of the system LY = \Y.

(K, d), constants C = C of char 0:
Conjecture 7(L,B) = 0.

It holds in AKNS and [Grinevich] with coefficients in M,(C{x}),
C{x} ring of convergent power series.
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Classification of algebras
Decomposition of

f(\ p) =DRes(L— X, B — p)
in irreducible factors

f=ht. .. hTs

Theorem C. Let us assume (L, B) = 0. There exists a
polynomial F = hi* - -- hls that divides f such that BC(L,B) = (F).
Furthermore

o A
(ht') (hs)

whose ring structure is componentwise addition and multiplication.

C[L, B] ~
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Algorithm BC-generator

Given commuting MODOs L and B in Ry[D], with L of order one
and invertible leading coefficient, return a polynomial F € C[\, ]

BC(L, B) = (F).

1. Compute the differential resultant
f(\, p) =DRes(L— X\, B —p)

2. If f(L, B) = 0 then factor f to obtain hi*--- hZs, each h;
irreducible in C[\, p].

3. Foreachi=1,...,s, compute the minimal integer r;, with
0 < r; <oy, such that

[T rit.B) =0.

4. Return F = hi*--- h.
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Theorem Let us consider commuting MODOs L and B in R[D],
with L of order one and invertible leading coefficient. If B ¢ C[L]
and f(L,B) =0 then

BC(L, B) = (f).

Classification of algebras C[L, B] for MODOs of size ¢ = 2:

® [f f has one irreducible component then
CIL, B] ~ C[A, u]/(f);
o If f = hy- hy then C[L,B] ~ C[\, u]/(h1) x C[\, u]/(h2).
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f(L, B) = 0 and BC(L, B) = (f)

Example 1: Irreducible curve
K = C(e**) and NLS potentials u(x) = e=2*, v(x) = 2%,
The spectral curve I is an irreducible singular curve defined by

fFOup) =2 +4N+1)2(A2 =22 +3)=0
Example 2: Reducible curve
K = C(x) and NLS potentials u(x) = x and v(x) = 0.
The spectral curve I defined by
F(\ 1) = p? +4X* = hihy = 0

hy(L,B) # 0 and hy(L,B) #0 .

C[L, B] =~ C[A, ] /(h1) x C[X, u]/(h2)
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¢ = 2: Space of common solutions

Let P = (Ao, po) be on the curve I with pg # 0. Let ¥ be a
Picard-Vessiot field for the system DY = N, Y.
B — pg restricted to the kernel of L — \g gives

(B = po)y = M(L — Xo, B — o) .
§:55 =55, £(¥) = M(L— Xo, B— po),

has a nontrivial kernel L,
L= {(1,1%2) € T | (—wv +22X0® — po) ¥1 + (s +2udo) Y2 =0 }
(rank 1) fiber bundle over T,

—wuv + 2100 — 1o _ Y2
w +2ulg o

satisfies the Riccati-type equation ¢’ — ug? — 21\¢ — v = 0, since

¢ —up® — 2 ¢ —v=—u-f(\p)=0.

(ZSZ—
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Example 1: Irreducible curve
K = C(e**) and NLS potentials u(x) = e™2*, v(x) = 2e?*,
The spectral curve I is an irreducible singular curve defined by

fFOup) =p? +4A+1)2(A2 =221 +3)=0
The common solution of the coupled spectral problem at a
nonbranching point P is
1 . —21+ 22)\% - o
V= thg=———— ..
(qb) with ¢ 2+2%

Example 2: Reducible curve
K = C(x) and NLS potentials u(x) = x and v(x) = 0.
The spectral curve I defined by

FA\ ) = p? + 84X = hihy =0

1 , 2i\2 — o
V= th ¢ = — 22020
(qb) with ¢ = =
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Available at
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