Integrability and limit cycles in polynomial systems of ODEs

Valery Romanovski

CAMTP - Center for Applied Mathematics and Theoretical Physics
Faculty of Natural Science and Mathematics
Faculty of Electrical Engineering and Computer Science
University of Maribor
Maribor, Slovenia

Differential Algebra and Related Topics XI
School of Mathematical Sciences
Queen Mary University of London
5-9 June 2023

Outline

- Introduction to the center problem
- Limit cycles: Cyclicity and 16th Hilbert problem
- Algorithmic approach to the problems

References:

- V. G. Romanovski and D. S. Shafer. The Center and Cyclicity Problems: A Computational Algebra Approach. Birkhäuser, Boston, 2009,
- T. Petek and V. G. Romanovski, Computation of Normal Forms for Systems with Many Parameters, arXiv:2305.01739, 2023.

Poincaré center problem

- A center \Longleftrightarrow all solutions near the origin are periodic.
- A focus \Longleftrightarrow all solutions near the origin are spirals.

$$
\begin{equation*}
\dot{u}=-v+\sum_{i+j=2}^{n} \alpha_{i j} u^{i} v^{j}, \quad \dot{v}=u+\sum_{i+j=2}^{n} \beta_{i j} u^{i} v^{j} \tag{1}
\end{equation*}
$$

Poincaré return map:

$$
\mathcal{P}(\rho)=\rho+\eta_{3}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{3}+\eta_{4}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{4}+\ldots
$$

Center: $\eta_{3}=\eta_{4}=\eta_{5}=\cdots=0$.

$$
\mathcal{P}(\rho)=\rho+\eta_{3}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{3}+\eta_{4}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{4}+\ldots
$$

Center: $\eta_{3}=\eta_{4}=\eta_{5}=\cdots=0$.
Poincaré center problem
Find all systems in the family

$$
\dot{u}=-v+\sum_{i+j=2}^{n} \alpha_{i j} u^{i} v^{j}, \quad \dot{v}=u+\sum_{i+j=2}^{n} \beta_{i j} u^{i} v^{j}
$$

which have a center at the origin.
Bautin ideal: $\mathcal{B}=\left\langle\eta_{3}, \eta_{4}, \ldots\right\rangle \subset \mathbb{R}\left[\alpha_{i j}, \beta_{i j}\right]$.

Algebraic counterpart

Find the variety $\mathbf{V}(\mathcal{B})$ of the Bautin ideal $\mathcal{B}=\left\langle\eta_{3}, \eta_{4}, \eta_{5} \ldots\right\rangle$.

$$
\mathbf{V}(\mathcal{B})=\left\{\left(\alpha_{i j}, \beta_{i j}\right) \in \mathcal{E} \mid \eta_{3}\left(\alpha_{i j}, \beta_{i j}\right)=\eta_{4}\left(\alpha_{i j}, \beta_{i j}\right)=\cdots=0\right\}
$$

- $\mathbf{V}(\mathcal{B})$ is called the center variety.

Limit cycles

Hilbert's 16th problem

$$
\begin{equation*}
\dot{x}=P_{n}(x, y), \quad \dot{y}=Q_{n}(x, y) \tag{A}
\end{equation*}
$$

$P_{n}(x, y), Q_{n}(x, y)$, are polynomials of degree n.
Let $h\left(P_{n}, Q_{n}\right)$ be the number of limit cycles of system (A) and let $H(n)=\sup h\left(P_{n}, Q_{n}\right)$.
The question of the second part of the 16th Hilbert's problem:

- find a bound for $H(n)$ as a function of n.

The problem is still unresolved even for $n=2$.
$n=2$

- I. Petrovskii, E. Landis, On the number of limit cycles of the equation $d y / d x=P(x, y) / Q(x, y)$, where P and Q are polynomials of 2nd degree (Russian), Mat. Sb. N.S. 37(79) (1955), 209-250
- I. Petrovskii, E. Landis, On the number of limit cycles of the equation $d y / d x=P(x, y) / Q(x, y)$, where P and Q are polynomials (Russian), Mat. Sb. N.S. 85 (1957), 149-168

Song Ling Shi, A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sinica 23 (1980), 153-158

- A simpler problem: is $H(n)$ finite? Unresolved.
- An even simpler problem: is $h\left(P_{n}, Q_{n}, a^{*}, b^{*}\right)$ finite?
- H. Dulac, Sur les cycles limite, Bull. Soc. Math. France 51 (1923), 45-188

Around 1980 Yu. Ilyashenko found a mistake in Dulac's proof.

- Chicone and Shafer (1983) proved that for $n=2$ a fixed system (A) has only finite number of limit cycles in any bounded region of the phase plane.
- Bamòn (1986) and V. $\mathrm{R}(1986)$ proved that $h\left(P_{2}, Q_{2}, a^{*}, b^{*}\right)$ is finite.
- II'yashenko (1991) and Ecalle (1992): $h\left(P_{n}, Q_{n}, a^{*}, b^{*}\right)$ is finite for any n.

Cyclicity and Bautin's theorem

$$
\begin{equation*}
\dot{u}=-v+\sum_{j+l=2}^{n} \alpha_{j l} u^{j} v^{\prime}, \quad \dot{v}=u+\sum_{j+I=2}^{n} \beta_{j l} u^{j} v^{\prime} \tag{2}
\end{equation*}
$$

Poincare map:
$\mathcal{P}(\rho)=\rho+\eta_{2}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{2}+\eta_{3}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{3}+\cdots+\eta_{k}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{k}+\ldots$.
Let $\mathcal{B}=\left\langle\eta_{3}, \eta_{4}, \ldots\right\rangle \subset \mathbb{R}\left[\alpha_{i j}, \beta_{i j}\right]$ be the ideal generated by all focus quantities η_{i}. There is k such that

$$
\mathcal{B}=\left\langle\eta_{u_{1}}, \eta_{u_{2}}, \ldots, \eta_{u_{k}}\right\rangle .
$$

The Bautin ideal and Bautin's theorem

Then for any s

$$
\begin{gathered}
\eta_{s}=\eta_{u_{1}} \theta_{1}^{(s)}+\eta_{u_{2}} \theta_{2}^{(s)}+\cdots+\eta_{u_{k}} \theta_{k}^{(k)} \\
\mathcal{P}(\rho)-\rho=\eta_{u_{1}}\left(1+\mu_{1} \rho+\ldots\right) \rho^{u_{1}}+\cdots+\eta_{u_{k}}\left(1+\mu_{k} \rho+\ldots\right) \rho^{u_{k}}
\end{gathered}
$$

Bautin's Theorem

If $\mathcal{B}=\left\langle\eta_{u_{1}}, \eta_{u_{2}}, \ldots, \eta_{u_{k}}\right\rangle$ then the cyclicity of system (2) (i.e. the maximal number of limit cycles which appear from the origin after small perturbations) is less or equal to k.

Proof. Bautin N.N. Mat. Sb. (1952) v.30, 181-196 (Russian); Trans. Amer. Math. Soc. (1954) v. 100
Roussarie R. Bifurcations of planar vector fields and Hilbert's 16th problem (1998), Birkhauser.

The cyclicity problem

Find an upper bound for the maximal number of limit cycles in a neighborhood of a center or a focus

By Bautin's theorem:
Algebraic counterpart
Find a basis for the Bautin ideal $\left\langle\eta_{3}, \eta_{4}, \eta_{5}, \ldots\right\rangle$ generated by all coefficients of the Poincaré map

Complexification

$$
\begin{aligned}
& \text { Complexification: } x=u+i v \\
& \dot{x}=i\left(x-\sum_{p+q=1}^{n-1} a_{p q} x^{p+1} \bar{x}^{q}\right) \\
& \dot{\bar{x}}=-i\left(\bar{x}-\sum_{p+q=1}^{n-1} \bar{a}_{p q} \bar{x}^{p+1} x^{q}\right)
\end{aligned}
$$

$$
\begin{equation*}
\dot{x}=i\left(x-\sum_{p+q=1}^{n-1} a_{p q} x^{p+1} y^{q}\right), \quad \dot{y}=-i\left(y-\sum_{p+q=1}^{n-1} b_{q p} x^{q} y^{p+1}\right) \tag{3}
\end{equation*}
$$

The change of time $d \tau=i d t$ transforms (3) to the system

$$
\begin{equation*}
\dot{x}=\left(x-\sum_{p+q=1}^{n-1} a_{p q} x^{p+1} y^{q}\right), \dot{y}=-\left(y-\sum_{p+q=1}^{n-1} b_{q p} x^{q} y^{p+1}\right) \tag{4}
\end{equation*}
$$

Poincaré-Lyapunov Theorem

The system

$$
\begin{equation*}
\frac{d u}{d t}=-v+\sum_{i+j=2}^{n} \alpha_{i j} u^{i} v^{j}, \quad \frac{d v}{d t}=u+\sum_{i+j=2}^{n} \beta_{i j} u^{i} v^{j} \tag{5}
\end{equation*}
$$

has a center at the origin if and only if it admits a first integral of the form

$$
\Phi=u^{2}+v^{2}+\sum_{k+l \geq 2} \phi_{k l} u^{k} v^{\prime}
$$

- Center \Longleftrightarrow local analytic integrability
- A similar approach can be applied to the problem of local integrability for higher dimensional vector field

Local integrability of complex systems

For system

$$
\begin{equation*}
\dot{x}=\left(x-\sum_{p+q=1}^{n-1} a_{p q} x^{p+1} y^{q}\right)=P, \dot{y}=-\left(y-\sum_{p+q=1}^{n-1} b_{q p} x^{q} y^{p+1}\right)=Q \tag{6}
\end{equation*}
$$

look for a function

$$
\Phi\left(x, y ; a_{10}, b_{10}, \ldots\right)=x y+\sum_{s=3}^{\infty} \sum_{j=0}^{s} v_{j, s-j} x^{j} y^{s-j}
$$

such that

$$
\begin{equation*}
\frac{\partial \Phi}{\partial x} P+\frac{\partial \Phi}{\partial y} Q=g_{11}(x y)^{2}+g_{22}(x y)^{3}+\cdots \tag{7}
\end{equation*}
$$

and g_{11}, g_{22}, \ldots are polynomials in $a_{p q}, b_{q p}$. These polynomials are called focus quantities.

- The ideal $\mathcal{B}=\left\langle g_{11}, g_{22}, \ldots\right\rangle$ is called the Bautin ideal.
- Systems from $\mathbf{V}(\mathcal{B})$ are integrable.

Local Integrability Problem

Find the variety $\mathbf{V}(\mathcal{B})$ of the Bautin ideal $\mathcal{B}=\left\langle g_{11}, g_{22}, g_{33} \ldots\right\rangle$.

- Compute polynomials $g_{s s}$ until the chain of varieties (considering as complex varieties) $V\left(\mathcal{B}_{1}\right) \supseteq V\left(\mathcal{B}_{2}\right) \supseteq V\left(\mathcal{B}_{3}\right) \supseteq \ldots$ stabilizes (here $\left.\mathcal{B}_{k}=\left\langle g_{11}, \ldots, g_{k k}\right\rangle\right)$, that is, until we find k_{0} such that $V\left(\mathcal{B}_{k_{0}}\right)=V\left(\mathcal{B}_{k_{0}+1}\right)$.
- Show that $V\left(\mathcal{B}_{k_{0}}\right)=V(\mathcal{B})$, that is, that each systems from $V\left(\mathcal{B}_{k_{0}}\right)$ admits a first integral of the form (7).

The center problem is solved for:

- quadratic system: $\dot{x}=x+P_{2}(x, y), \quad \dot{y}=-y+Q_{2}(x, y)$ by Dulac (1908) (by Kapteyn (1912) for real systems)
- the linear center perturbed by 3rd degree homogeneous polynomials:
$\dot{x}=x+P_{3}(x, y), \quad \dot{y}=-y+Q_{3}(x, y)$
by Sadovski (1974) (by Malkin (1964) for real systems)
- for some particular subfamilies of the cubic system
$\dot{x}=x+P_{2}(x, y)+P_{3}(x, y), \quad \dot{y}=-y+Q_{2}(x, y)+Q_{3}(x, y)$
- for Lotka-Volterra quartic systems with homogeneous nonlinearities
$\dot{x}=x+x P_{3}(x, y), \quad \dot{y}=-y+y Q_{3}(x, y)$
by B. Ferčec, J. Giné, Y. Liu and V. R. (2013)
- for Lotka-Volterra quintic systems with homogeneous nonlinearities
$\dot{x}=x+x P_{4}(x, y), \quad \dot{y}=-y+y Q_{4}(x, y)$
by J. Giné and V. R. (2010)

The center variety of the quadratic system

$$
\begin{equation*}
\dot{x}=x-a_{10} x^{2}-a_{01} x y-a_{-12} y^{2}, \dot{y}=-\left(y-b_{10} x y-b_{01} y^{2}-b_{2,-1} x^{2}\right) . \tag{8}
\end{equation*}
$$

Theorem (H. Dulac 1908 - C. Christopher \& C. Rouseeau, 2001)

The variety of the Bautin ideal of system (8) coincides with the variety of the ideal $\mathcal{B}_{3}=\left\langle g_{11}, g_{22}, g_{33}\right\rangle$ and consists of four irreducible components:

1) $\mathbf{V}\left(J_{1}\right)$, where $J_{1}=\left\langle 2 a_{10}-b_{10}, 2 b_{01}-a_{01}\right\rangle$,
2) $\mathbf{V}\left(J_{2}\right)$, where $J_{2}=\left\langle a_{01}, b_{10}\right\rangle$,
3) $\mathbf{V}\left(J_{3}\right)$, where $J_{3}=\left\langle 2 a_{01}+b_{01}, a_{10}+2 b_{10}, a_{01} b_{10}-a_{-12} b_{2,-1}\right\rangle$,
4) $\mathbf{V}\left(J_{4}\right)=\left\langle f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\rangle$, where
$f_{1}=a_{01}^{3} b_{2,-1}-a_{-12} b_{10}^{3}, f_{2}=a_{10} a_{01}-b_{01} b_{10}, f_{3}=a_{10}^{3} a_{-12}-b_{2,-1} b_{01}^{3}$,
$f_{4}=a_{10} a_{-12} b_{10}^{2}-a_{01}^{2} b_{2,-1} b_{01}, f_{5}=a_{10}^{2} a_{-12} b_{10}-a_{01} b_{2,-1} b_{01}^{2}$.

The cyclicity of the quadratic system

Generalized Bautin's theorem (V. R. \& D. Shafer, 2009)

If the ideal \mathcal{B} of all focus quantities of system

$$
\dot{x}=\left(x-\sum_{p+q=1}^{n-1} a_{p q} x^{p+1} y^{q}\right), \quad \dot{y}=-\left(y-\sum_{p+q=1}^{n-1} b_{q p} x^{q} y^{p+1}\right)
$$

is generated by the m first focus quantities, $\mathcal{B}=\left\langle g_{11}, g_{22}, \ldots, g_{m m}\right\rangle$, then at most m limit cycles bifurcate from the origin of the corresponding real system

$$
\dot{u}=\lambda u-v+\sum_{j+l=2}^{n} \alpha_{j l} u^{j} v^{\prime}, \quad \dot{v}=u+\lambda v+\sum_{j+l=2}^{n} \beta_{j l} u^{j} v^{\prime},
$$

that is the cyclicity of the system is less or equal to m.

The problem has been solved for:

- The quadratic system ($\dot{x}=P_{n}, \dot{y}=Q_{n}, n=2$) - Bautin (1952) (Żolạdek (1994), Yakovenko (1995), Françoise and Yomdin (1997), Han, Zhang \& Zhang (2007)).
- The system with homogeneous cubic nonlinearities - Sibirsky (1965) (Żołạadek (1994))

Bautin's theorem for the quadratic system

The cyclicity of the origin of system
$\dot{u}=\lambda u-v+\alpha_{20} u^{2}+\alpha_{11} u v+\alpha_{02} v^{2}, \quad \dot{v}=u+\lambda v+\beta_{20} u^{2}+\beta_{11} u v+\beta_{02} v^{2}$
equals three.

Proof. (V. R., 2007) We have for all k

$$
\begin{equation*}
g_{k k} \mid \mathbf{v}\left(\mathcal{B}_{3}\right) \equiv 0 \tag{9}
\end{equation*}
$$

where $\mathcal{B}_{3}=\left\langle g_{11}, g_{22}, g_{33}\right\rangle$.
Hence, if \mathcal{B}_{3} is a radical ideal then (9) and Hilbert Nullstellensatz yield that $g_{k k} \in \mathcal{B}_{3}$. Thus, to prove that an upper bound for the cyclicity is equal to three it is sufficient to show that \mathcal{B}_{3} is a radical ideal.
With help of Singular we check that

$$
\begin{equation*}
\operatorname{std}\left(\operatorname{radical}\left(\mathcal{B}_{3}\right)\right)=\operatorname{std}\left(\mathcal{B}_{3}\right) . \tag{10}
\end{equation*}
$$

Hence, $\mathcal{B}_{3}=\mathcal{B}$. This completes the proof.

$$
\dot{u}=-v+\sum_{i+j=2}^{n} \alpha_{i j} u^{i} v^{j}, \quad \dot{v}=u+\sum_{i+j=2}^{n} \beta_{i j} u^{i} v^{j}
$$

Poincaré return map:

$$
\mathcal{P}(\rho)=\rho+\eta_{3}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{3}+\eta_{4}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{4}+\ldots
$$

Center: $\eta_{3}=\eta_{4}=\eta_{5}=\cdots=0$.
$\mathcal{B}=\left\langle\eta_{3}, \eta_{4}, \eta_{5}, \ldots\right\rangle, \mathbf{V}(\mathcal{B})=V_{1} \cup \ldots V_{m}$.

- Roughly speaking the number of small limit cycles in bifurcating in a neighborhood of V_{k} is equal to the codimension of V_{k} in the space of parameters.

Computation of necessary conditions of integrability

$$
\begin{align*}
& \dot{x}=\quad x-\sum_{(p, q) \in S} a_{p q} x^{p+1} y^{q}=x\left(1-\sum_{(p, q) \in S} a_{p q} x^{p} y^{q}\right)=x(1-\tilde{P}(x, y))=P(x, y), \\
& \dot{y}=-y+\sum_{(p, q) \in S} b_{q p} x^{q} y^{p+1}=y\left(-1-\sum_{(p, q) \in S} b_{q p} x^{q} y^{p}\right)=y(-1-\tilde{Q}(x, y))=Q(x, y), \tag{11}
\end{align*}
$$

$S \subset \mathbb{N}_{-1} \times \mathbb{N}_{0}, \mathbb{N}_{-1}=\{0 \cup-1\} \cup \mathbb{N}, \mathbb{N}_{0}=\mathbb{N} \cup\{0\} . \mathcal{F}$ - the space of formal power series

$$
\begin{gathered}
\Psi=\psi_{11} x y+\sum_{k_{1}+k_{2}>2} \psi_{k_{1} k_{2}} x^{k_{1}} y^{k_{2}} . \\
D: \mathcal{F} \rightarrow \mathcal{F}, \quad D:=\frac{\partial \Psi}{\partial x} P(x, y)+\frac{\partial \Psi}{\partial y} Q(x, y)=D^{(1)}+D^{(2)} \\
D^{(1)}:=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y} \quad D^{(2)}:=-x \tilde{P} \frac{\partial}{\partial x}-y \tilde{Q} \frac{\partial}{\partial y} . \\
\mathcal{F}=\operatorname{im} D^{(1)} \oplus \operatorname{ker} D^{(1)} .
\end{gathered}
$$

Problem. Find $\Psi \in \mathcal{F}$ such that $D(\Psi)=G \in \operatorname{ker} D^{(1)}$.

In such case is said that a $\Psi \in \mathcal{F}$ is in a normal form with respect to (11).

Problem. Find $\Psi \in \mathcal{F}$ such that

$$
D(\Psi)=G \in \operatorname{ker} D^{(1)}
$$

- $\mathcal{F}_{j}(j \geq 2)$ - the space of homogeneous polynomials of degree j.

$$
\Phi_{j}=\sum_{k_{1}+k_{2}=j} \phi_{k_{1} k_{2}} x^{k_{1}} y^{k_{2}}
$$

The restriction of D to \mathcal{F}_{j} :

$$
D_{j}: \mathcal{F}_{j} \rightarrow \mathcal{F}_{j}
$$

$D_{j}^{(1)}$ is semisimple: eigenvalues $\beta_{k_{1} k_{2}}=k_{1}-k_{2}$, eigenvectors $x^{k_{1}} y^{k_{2}}$.

$$
\mathcal{F}_{j}=\operatorname{im} D_{j}^{(1)} \oplus \operatorname{ker} D_{j}^{(1)}
$$

Let \mathcal{P}_{j} be the projection on $\operatorname{ker} D_{j}^{(1)}$.

Computation of a formal series in the normal form

- $\Psi:=x y, \quad G:=0$.
- Assume that equation Ψ is in the normal form to order $j-1$. Let $g_{j}=\mathcal{P}_{j}(D(\Psi)), h_{j}=\left(I-\mathcal{P}_{j}\right)(D(\Psi))$.
Solve

$$
\begin{equation*}
D_{j} \Phi_{j}=h_{j}+g_{j} . \tag{12}
\end{equation*}
$$

- $\Psi=\Psi+\Phi_{j}, \quad G=G+g_{j}$.

A grading of the formal series module

$$
\begin{aligned}
& \dot{x}=\quad x-\sum_{(p, q) \in S} a_{p q} x^{p+1} y^{q}=x\left(1-\sum_{(p, q) \in S} a_{p q} x^{p} y^{q}\right)=P(x, y), \\
& \dot{y}=-y+\sum_{(p, q) \in S} b_{q p} x^{q} y^{p+1}=-y\left(1-\sum_{(p, q) \in S} b_{q p} x^{q} y^{p}\right)=Q(x, y),
\end{aligned}
$$

ℓ - the number of parameters of each equation.
$S=\left\{a_{p_{1}, q_{1}}, a_{p_{2}, q_{2}}, \ldots, a_{p_{\ell}, q_{\ell}}, b_{q_{\ell}, p_{\ell}}, \ldots, b_{q_{2}, p_{2}}, b_{q_{1}, p_{1}}\right\}-$ the ordered set.
$k[a, b]:=k\left[a_{p_{1}, q_{1}}, a_{p_{2}, q_{2}}, \ldots, a_{p_{\ell}, q_{\ell}}, b_{q_{\ell}, p_{\ell}}, \ldots, b_{q_{2}, p_{2}}, b_{q_{1}, p_{1}}\right]$.
Any monomial appearing in $k[a, b]$ has the form

$$
a_{p_{1}, q_{1}}^{\nu_{1}} \partial_{p_{2}, q_{2}}^{\nu_{2}} \cdots a_{p_{\ell}, q_{\ell}}^{\nu_{\ell}} b_{q_{\ell}, p_{\ell}}^{\nu_{\ell+1}} \cdots b_{q_{2}, p_{2}}^{\nu_{2} \ell-1} b_{q_{1}, p_{1}}^{\nu_{2 \ell}} .
$$

For $\nu \in \mathbb{N}_{0}^{2 \ell}$ we write

$$
\begin{gathered}
(a b)^{\nu} \stackrel{\text { def }}{=} a_{p_{1}, q_{1}}^{\nu_{1}} a_{p_{2}, q_{2}}^{\nu_{2}} \cdots a_{p_{\ell}, q_{\ell}}^{\nu_{\ell}} b_{q_{\ell}, p_{\ell}}^{\nu_{\ell+1}} \cdots b_{q_{2}, p_{2}}^{\nu_{2 \ell-1}} b_{q_{1}, p_{1}}^{\nu_{2 \ell}} \\
L: \mathbb{N}_{0}^{2 \ell} \rightarrow \mathbb{Z}^{2} \\
L(\nu)=\binom{p_{1}}{q_{1}} \nu_{1}+\cdots+\binom{p_{\ell}}{q_{\ell}} \nu_{\ell}+\binom{q_{\ell}}{p_{\ell}} \nu_{\ell+1}+\cdots+\binom{q_{1}}{p_{1}} \nu_{2 \ell}=\binom{L^{1}(\nu)}{L^{2}(\nu)} .
\end{gathered}
$$

$$
L(\nu)=\binom{p_{1}}{q_{1}} \nu_{1}+\cdots+\binom{p_{\ell}}{q_{\ell}} \nu_{\ell}+\binom{q_{\ell}}{p_{\ell}} \nu_{\ell+1}+\cdots+\binom{q_{1}}{p_{1}} \nu_{2 \ell}=\binom{L^{1}(\nu)}{L^{2}(\nu)} .
$$

Denote $\mathcal{Q}=\left\{\left(k_{1}, k_{2}\right) \in \mathbb{N}_{-1} \times \mathbb{N}_{-1} ; k_{1}+k_{2} \geq 0\right\}$.

Definition

For $(i, j) \in \mathcal{Q}$, a (Laurent) polynomial $f \in k[a, b], f=\sum_{\nu \in \operatorname{Supp}(f)} f^{(\nu)}(a b)^{\nu}$, is an (i, j)-polynomial if for every $\nu \in \operatorname{Supp}(f) L(\nu)=(i, j)$.

Let $R_{(i, j)}$ will be the subset of $k[a, b]$ consisting of all (i, j)-polynomials,

$$
\begin{gathered}
R=\oplus_{(i, j) \in \mathcal{Q}} R_{(i, j)} \\
R_{(j, k)} R_{(s, t)} \subseteq R_{(j+s, k+t)} \quad \Rightarrow R \text { is a graded ring. }
\end{gathered}
$$

Let M be the set of all formal power series of the form

$$
\begin{equation*}
\Psi(x, y)=v_{0,0} x y+\sum_{i+j>2} v_{i-1, j-1} x^{i} y^{j}=x y\left(v_{0,0}+\sum_{i+j>2} v_{i-1, j-1} x^{i-1} y^{j-1}\right) \tag{13}
\end{equation*}
$$

such that the $v_{i-1, j-1}$ is a $(i-1, j-1)$-polynomial.
Denoting $M_{(i, j)}=R_{(i, j)} x^{i+1} y^{j+1}$ we have

$$
M:=\oplus_{(i, j) \in \mathcal{Q}} M_{(i, j)}
$$

M is a vector space over \mathbb{Q} and a graded R-module.

Theorem

For system

$$
\dot{x}=x-\sum_{(p, q) \in S} a_{p q} x^{p+1} y^{q}, \dot{y}=-y+\sum_{(p, q) \in S} b_{q p} x^{q} y^{p+1},
$$

there exists
$\Psi(x, y)=v_{0,0} x y+\sum_{i+j>2} v_{i-1, j-1} x^{i} y^{j}=x y\left(v_{0,0}+\sum_{i+j>2} v_{i-1, j-1} x^{i-1} y^{j-1}\right) \in M$
such that
(a) $D(\Psi) \in \operatorname{ker} D^{(1)}$, more precisely,

$$
D(\Psi)=\sum_{k=1}^{\infty} g_{k k}(x y)^{k+1}\left(\forall k \geq 1 g_{k k} \in R_{k k}\right) ;
$$

(b) for every pair $(i, j) \in \mathbb{N}_{-1} \times \mathbb{N}_{-1}, i+j \geq 0, v_{i j} \in R_{i j}$;
(c) for every $k \geq 1, v_{k, k}=0$.

Integrability problem: Compute the variety of $\mathcal{B}=\left\langle g_{11}, g_{22}, \ldots\right\rangle$.

Computation of $g_{k k}$

$$
L(\nu)=\binom{p_{1}}{q_{1}} \nu_{1}+\cdots+\binom{p_{\ell}}{q_{\ell}} \nu_{\ell}+\binom{q_{\ell}}{p_{\ell}} \nu_{\ell+1}+\cdots+\binom{q_{1}}{p_{1}} \nu_{2 \ell}=\binom{L^{1}(\nu)}{L^{2}(\nu)} .
$$

R is our graded ring of formal power series of 2ℓ variables $a_{p_{1}, q_{1}}, a_{p_{2}, q_{2}}, \ldots, a_{p_{\ell}, q_{\ell}}, b_{q_{\ell}, p_{\ell}}, \ldots, b_{q_{2}, p_{2}}, b_{q_{1}, p_{1}}$ with the coefficients in \mathbb{Q}. $\nu \in \mathbb{N}_{0}^{2 \ell},|\nu|=\nu_{1}+\cdots+\nu_{2 \ell}$.
For $\psi \in M$:

$$
\Psi(x, y)=v_{0,0} x y+\sum_{i+j>2} v_{i-1, j-1} x^{i} y^{j}
$$

define the map

$$
\begin{gathered}
\pi: M \rightarrow R \\
\pi(\Psi(x, y))=\Psi(1,1) . \\
V(a, b)=\Psi(1,1)=v_{0,0}+\sum_{i+j>2} v_{i-1, j-1}=\sum_{|\nu| \geq 0} V(\nu)(a b)^{\nu} .
\end{gathered}
$$

π is an isomorphism with the inverse

$$
\pi^{-1}(V)=\sum_{|\nu| \geq 0} V(\nu)(a b)^{\nu} x^{L_{1}(\nu)+1} y^{L_{2}(\nu)+1}
$$

Theorem

There exists $\Psi \in M$, such that
$D(\Psi)=g(x, y) \in \operatorname{ker} D^{(1)}$, where

$$
g(x, y)=\sum_{k=1}^{\infty} g_{k k}(x y)^{k+1}\left(\forall k \geq 1 g_{k k} \in R_{k k}\right)
$$

$V(a, b)=\pi(\Psi)$ and $G(a, b)=\pi\left(g(x, y)=\sum_{\nu} G(\nu)(a b)^{\nu}\right.$ are computed by
$\left(L_{1}(\nu)-L_{2}(\nu)\right) V(\nu)=\sum_{j=1}^{\ell} V\left(\nu_{1}, \ldots, \nu_{j}-1, \ldots, \nu_{2 \ell}\right)\left(L_{1}\left(\nu_{1}, \ldots, \nu_{j}-1, \ldots, \nu_{2 \ell}\right)+1\right)$ $-\sum_{j=\ell+1}^{2 \ell} V\left(\nu_{1}, \ldots, \nu_{j}-1, \ldots, \nu_{2 \ell}\right)\left(L_{2}\left(\nu_{1}, \ldots, \nu_{j}-1, \ldots, \nu_{2 \ell}\right)+1\right)$
$=\sum_{j=1}^{\ell} V\left(\nu_{1}, \ldots, \nu_{j}-1, \ldots, \nu_{2 \ell}\right)\left(L_{1}\left(\nu_{1}, \ldots, \nu_{j}-1, \ldots, \nu_{2 \ell}\right)+1\right)$

$$
-\sum_{j=\ell+1}^{2 \ell} V\left(\nu_{1}, \ldots, \nu_{j}-1, \ldots, \nu_{2 \ell}\right)\left(L_{2}\left(\nu_{1}, \ldots, \nu_{j}-1, \ldots, \nu_{2 \ell}\right)+1\right)
$$

The equation for V is a difference equation.

$$
\begin{gather*}
F\left(u_{1}, \ldots, u_{n}\right)=\sum_{\nu} F_{\left(\nu_{1}, \ldots, \nu_{n}\right)} u_{1}^{\nu_{1}} \ldots u_{n}^{\nu_{n}}=\sum_{\nu} F_{(\nu)} u^{(\nu)} \\
\sum_{\nu} \nu_{i} F_{(\nu ; i)} u^{(\nu)}=u_{i}\left(u_{i} F\right)_{u_{i}}^{\prime}, \sum_{\nu} \nu_{i} F_{(\nu ; j)} u^{(\nu)}=u_{i} u_{j}^{\prime} F_{i j}^{\prime}(i \neq j), \tag{14}\\
\sum_{\nu} \nu_{i} F_{(\nu)} u^{(\nu)}=u_{i} F_{u_{i}}^{\prime}, \sum_{\nu} \nu_{i} F_{(\nu ; j)} u^{(\nu)}=u_{j} F,
\end{gather*}
$$

where

$$
F_{(\nu ; j)}:=F_{\left(\nu_{1}, \ldots, \nu_{j-1}, \nu_{j}-1, \nu_{j+1}, \ldots, \nu_{n}\right)}
$$

Denote $|a|=\sum_{(i, j) \in S} a_{i j},|b|=\sum_{(j, i) \in S} b_{i j}$.

$$
\begin{align*}
\mathcal{A}(V)= & \sum_{(i, j) \in S} \frac{\partial V}{\partial a_{i j}} a_{i j}(i-j-i|a|+j|b|)+\sum_{(j, i) \in S} \frac{\partial V}{\partial b_{i j}} b_{i j}(i-j-i|a|+j|b|) \\
& -V(|a|-|b|) \tag{15}
\end{align*}
$$

$$
\mathcal{A}: R \longrightarrow R
$$

$$
R=\operatorname{im} \mathcal{A} \oplus \operatorname{ker} \mathcal{A}, \quad \operatorname{ker} \mathcal{A}=\oplus R_{(i, i)} .
$$

$$
\mathcal{A}(V(a, b))=G(a, b)=\sum_{k} g_{k k}(a, b) .
$$

Problem: Find the variety of the Bautin ideal $B=\left\langle g_{11}, g_{22}, \ldots\right\rangle$. Let $B_{m}=\left\langle g_{11}, g_{22}, \ldots, g_{m m}\right\rangle$.

- Compute until find a B_{s} :

$$
\sqrt{B_{1}} \subset \sqrt{B_{2}} \subset \cdots \subset \sqrt{B_{s-1}}=\sqrt{B_{s}} .
$$

- Compute decomposition $\sqrt{B_{s}}=\cap_{i=1}^{r} P_{r}$, where P_{r} are prime. Question. Can the grading of R help to compute the decomposition in a more efficient way?
- Let $P_{k}=\left\langle f_{1}(a, b), \ldots, f_{u}(a, b)\right\rangle$.

Does the system

$$
\left\{\begin{array}{l}
\mathcal{A}(V)=0 \\
f_{1}(a, b)=\cdots=f_{u}(a, b)=0
\end{array}\right.
$$

has a nontrivial solution $V=1+\ldots$?

Quadratic system

$$
\begin{gather*}
\dot{x}=\left(x-a_{10} x^{2}-a_{01} x y-a_{-12} y^{2}\right) \tag{16}\\
\dot{y}=-\left(y-b_{2,-1} x^{2}-b_{10} x y-b_{01} y^{2}\right) . \\
B_{3}=\left\langle g_{11}, g_{22}, g_{33}\right\rangle=\cap_{i=1}^{4} J_{i}:
\end{gather*}
$$

- $V_{1}=\mathbf{V}\left(J_{1}\right)$, where $J_{1}=\left\langle 2 a_{10}-b_{10}, 2 b_{01}-a_{01}\right\rangle$;
- $V_{2}=\mathbf{V}\left(J_{2}\right)$, where $J_{2}=\left\langle a_{01}, b_{10}\right\rangle$;
- $V_{3}=\mathbf{V}\left(J_{3}\right)$, where

$$
J_{3}=\left\langle 2 a_{01}+b_{01}, a_{10}+2 b_{10}, a_{01} b_{10}-a_{-12} b_{2,-1}\right\rangle ;
$$

- $V_{4}=\mathbf{V}\left(J_{4}\right)$, where $J_{4}=\left\langle f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\rangle$, where
$f_{1}=a_{01}^{3} b_{2,-1}-a_{-12} b_{10}^{3}, f_{2}=a_{10} a_{01}-b_{01} b_{10}$,
$f_{3}=a_{10}^{3} a_{-12}-b_{2,-1} b_{01}^{3}, f_{4}=a_{10} a_{-12} b_{10}^{2}-a_{01}^{2} b_{2,-1} b_{01}$,
$f_{5}=a_{10}^{2} a_{-12} b_{10}-a_{01} b_{2,-1} b_{01}^{2}$.

Hamiltonian system: $J_{1}=\left\langle 2 a_{10}-b_{10}, 2 b_{01}-a_{01}\right\rangle \Rightarrow$ $a_{01}=2 b_{01}, b_{10}=2 a_{10}$

$$
\begin{aligned}
& \mathcal{A}(V):=a_{01}(|b|-1) \frac{\partial V}{\partial a_{01}}+a_{10}(1-|a|) \frac{\partial V}{\partial a_{10}}+a_{-12}(|a|+2|b|-3) \frac{\partial V}{\partial a_{-12}}+ \\
& b_{01}(|b|-1) \frac{\partial V}{\partial b_{01}}+b_{10}(1-|a|) \frac{\partial V}{\partial b_{10}}+b_{2,-1}(-2|a|-|b|+3) \frac{\partial V}{\partial b_{2,-1}}-V(|a|-|b|) . \\
& |a|=a_{10}+a_{01}+a_{-12}, \quad|b|=b_{01}+b_{10}+b_{2,-1} .
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{A}(V):=a_{10}(1-|a|) \frac{\partial V}{\partial a_{10}}+a_{-12}(|a|+2|b|-3) \frac{\partial V}{\partial a_{-12}}+ \\
b_{01}(|b|-1) \frac{\partial V}{\partial b_{01}}+b_{2,-1}(-2|a|-|b|+3) \frac{\partial V}{\partial b_{2,-1}}-V(|a|-|b|) .
\end{gathered}
$$

- $V=1-a_{-12} / 3-b_{2,-1} / 3-a_{10}-b_{01}$ is a solution to $\mathcal{A}(V)-V(|a|-|b|)=0$.
-

$$
H=-\left(x y-\frac{a_{-12}}{3} y^{3}-\frac{b_{2,-1}}{3} x^{3}-a_{10} x^{2} y-b_{01} x y^{2}\right)
$$

$\mathbf{V}\left(J_{3}\right)$, where $J_{3}=\left\langle 2 a_{01}+b_{01}, a_{10}+2 b_{10}, a_{01} b_{10}-a_{-12} b_{2,-1}\right\rangle$,

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathcal{A}(V):=a_{01}(|b|-1) \frac{\partial V}{\partial a_{01}}+a_{10}(1-|a|) \frac{\partial V}{\partial a_{10}}+a_{-12}(|a|+2|b|-3) \frac{\partial V}{\partial a_{-12}} \\
+b_{01}(|b|-1) \frac{\partial V}{\partial b_{01}}+b_{10}(1-|a|) \frac{\partial V}{\partial b_{10}}+b_{2,-1}(-2|a|-|b|+3) \frac{\partial V}{\partial b_{2,-1}} \\
-V(|a|+|b|) \\
2 a_{01}+b_{01}=a_{10}+2 b_{10}=a_{01} b_{10}-a_{-12} b_{2,-1}=0
\end{array}\right. \\
& \Rightarrow
\end{aligned}
$$

$$
\begin{align*}
& \mathcal{A}(V):=a_{01}(|b|-1) \frac{\partial V}{\partial a_{01}}+b_{10}(1-|a|) \frac{\partial V}{\partial b_{10}}+ \\
& b_{2,-1}(-|b|-2|a|+3) \frac{\partial V}{\partial b_{2,-1}}-V(|a|+|b|) \tag{17}
\end{align*}
$$

Darboux integral

$$
\begin{equation*}
\dot{x}=P(x, y), \quad \dot{y}=Q(x, y), \quad x, y \in \mathbb{C} \quad P, Q \text { are polynomials. } \tag{18}
\end{equation*}
$$

$f(x, y) \in \mathbb{C}[x, y]$ defines algebraic invariant curve $f(x, y)=0$ of system (18) if $\exists k(x, y) \in \mathbb{C}[x, y]$ such that

$$
\begin{equation*}
D(f):=\frac{\partial f}{\partial x} P+\frac{\partial f}{\partial y} Q=k f \tag{19}
\end{equation*}
$$

$k(x, y)$ is called a cofactor of f. Suppose that the curves defined by

$$
f_{1}=0, \ldots, f_{s}=0
$$

are invariant algebraic curves of system (18) with the cofactors k_{1}, \ldots, k_{s}. If

$$
\begin{equation*}
\sum_{j=1}^{s} \alpha_{j} k_{j}=0 \tag{20}
\end{equation*}
$$

then $H=f_{1}^{\alpha_{1}} \cdots f_{s}^{\alpha_{s}}$ is a (Darboux) first integral of the system (18).

- $f=\sum_{i+j=0}^{n} c_{i j} x^{i} y^{j}, \quad k=\sum_{i+j=0}^{m-1} d_{i j} x^{i} y^{j} .(m$ is the degree of the system).
- Equal the coefficients of the same terms in $D(f)=k f$.
- Solve the obtained system of polynomial equations for $c_{i j}, d_{i j}$.

$$
\ell_{1}=1+2 b_{10} x-a_{01} b_{2,-1} x^{2}+2 a_{01} y+2 a_{01} b_{10} x y-\frac{a_{01} b_{10}^{2}}{b_{2,-1}} y^{2}
$$

$$
\ell_{2}=\left(2 b_{10} b_{2,-1}^{2}+6 b_{10}^{2} b_{2,-1}^{2} x+3 b_{10}^{3} b_{2,-1}^{2} x^{2}-3 a_{01} b_{10} b_{2,-1}^{3} x^{2}-a_{01} b_{10}^{2} b_{2,-}^{3}\right.
$$

$$
6 a_{01} b_{10} b_{2,-1}^{2} y-3 b_{10}^{4} b_{2,-1} \times y+6 a_{01} b_{10}^{2} b_{2,-1}^{2} \times y-3 a_{01}^{2} b_{2,-1}^{3} \times y+3 a_{01} b_{10}^{3} b_{2,-}^{2}
$$

$$
3 a_{01}^{2} b_{10} b_{2,-1}^{3} x^{2} y-3 a_{01} b_{10}^{3} b_{2,-1} y^{2}+3 a_{01}^{2} b_{10} b_{2,-1}^{2} y^{2}-3 a_{01} b_{10}^{4} b_{2,-1} x y^{2}+3 a_{0}^{2}
$$

$$
\left.a_{01} b_{10}^{5} y^{3}-a_{01}^{2} b_{10}^{3} b_{2,-1} y^{3}\right) /\left(2 b_{10} b_{2,-1}^{2}\right)
$$

with the cofactors $k_{1}=2\left(b_{10} x-a_{01} y\right)$ and $k_{2}=3\left(b_{10} x-a_{01} y\right)$.
The equation

$$
\alpha_{1} k_{1}+\alpha_{2} k_{2}=0
$$

has a solution $\alpha_{1}=-3, \alpha_{2}=2, \Longrightarrow$

$$
\Psi=\ell_{1}^{-3} \ell_{2}^{2} \equiv c
$$

$$
\ell_{1}=1+2 b_{10} x-a_{01} b_{2,-1} x^{2}+2 a_{01} y+2 a_{01} b_{10} x y-\frac{a_{01} b_{10}^{2}}{b_{2,-1}} y^{2}
$$

$$
\ell_{2}=\left(2 b_{10} b_{2,-1}^{2}+6 b_{10}^{2} b_{2,-1}^{2} x+3 b_{10}^{3} b_{2,-1}^{2} x^{2}-3 a_{01} b_{10} b_{2,-1}^{3} x^{2}-a_{01} b_{10}^{2} b_{2,-}^{3}\right.
$$

$$
6 a_{01} b_{10} b_{2,-1}^{2} y-3 b_{10}^{4} b_{2,-1} \times y+6 a_{01} b_{10}^{2} b_{2,-1}^{2} \times y-3 a_{01}^{2} b_{2,-1}^{3} \times y+3 a_{01} b_{10}^{3} b_{2,-}^{2}
$$ $3 a_{01}^{2} b_{10} b_{2,-1}^{3} x^{2} y-3 a_{01} b_{10}^{3} b_{2,-1} y^{2}+3 a_{01}^{2} b_{10} b_{2,-1}^{2} y^{2}-3 a_{01} b_{10}^{4} b_{2,-1} x y^{2}+3 a_{0}^{2}$

$$
\left.a_{01} b_{10}^{5} y^{3}-a_{01}^{2} b_{10}^{3} b_{2,-1} y^{3}\right) /\left(2 b_{10} b_{2,-1}^{2}\right)
$$

with the cofactors $k_{1}=2\left(b_{10} x-a_{01} y\right)$ and $k_{2}=3\left(b_{10} x-a_{01} y\right)$.
First integral

$$
\Psi=\ell_{1}^{-3} \ell_{2}^{2} \equiv c
$$

$$
\begin{aligned}
& \hat{\mathcal{A}}(V):=a_{01}(|b|-1) \frac{\partial V}{\partial a_{01}}+b_{10}(1-|a|) \frac{\partial V}{\partial b_{10}}+ \\
& \quad b_{2,-1}(-|b|-2|a|+3) \frac{\partial V}{\partial b_{2,-1}}
\end{aligned}
$$

$(\hat{\mathcal{A}}$ is \mathcal{A} without $-V(|a|+|b|))$
$L_{1}=1+2 a_{01}+2 b_{10}+2 a_{01} b_{10}-\left(a_{01} b_{10}^{2}\right) / b_{2,-1}-a_{01} b_{2,-1}$
$L_{2}=\left(a_{01} b_{10}^{5}-3 a_{01} b_{10}^{3} b_{2,-1}-a_{01}^{2} b_{10}^{3} b_{2,-1}-3 b_{10}^{4} b_{2,-1}-3 a_{01} b_{10}^{4} b_{2,-1}+\right.$ $2 b_{10} b_{2,-1}^{2}+6 a_{01} b_{10} b_{2,-1}^{2}+3 a_{01}^{2} b_{10} b_{2,-1}^{2}+6 b_{10}^{2} b_{2,-1}^{2}+6 a_{01} b_{10}^{2} b_{2,-1}^{2}+$ $3 a_{01}^{2} b_{10}^{2} b_{2,-1}^{2}+3 b_{10}^{3} b_{2,-1}^{2}+3 a_{01} b_{10}^{3} b_{2,-1}^{2}-3 a_{01}^{2} b_{2,-1}^{3}-3 a_{01} b_{10} b_{2,-1}^{3}-$ $\left.\left.3 a_{01}^{2} b_{10} b_{2,-1}^{3}-a_{01} b_{10}^{2} b_{2,-1}^{3}+a_{01}^{2} b_{2,-1}^{4}\right) /\left(2 b_{10} b_{2,-1}^{2}\right)\right)$

$$
\hat{\mathcal{A}}\left(L_{1}\right)=K_{1} L_{1}, \quad \hat{\mathcal{A}}\left(L_{2}\right)=K_{2} L_{2},
$$

$K_{1}=-2\left(a_{01}-b_{10}\right), \quad K_{1}=-3\left(a_{01}-b_{10}\right)$,
$U=L_{1}^{-3} L_{2}^{2}$ is a solution to $\hat{\mathcal{A}}(U)=0$

$$
V=\frac{U-1}{\left.-6 a_{01} b_{10}-\left(3 b_{10}^{3}\right) / b_{2,-1}-\left(3 a_{01}^{2} b_{2,-1}\right) / b_{10}\right)}
$$

is a solution to

$$
\hat{\mathcal{A}}(V)=V(|a|+|b|) .
$$

$J_{4}=\left\langle a_{01}^{3} b_{2,-1}-a_{-12} b_{10}^{3}, a_{10} a_{01}-b_{01} b_{10}, a_{10}^{3} a_{-12}-\right.$ $\left.b_{2,-1} b_{01}^{3}, a_{10} a_{-12} b_{10}^{2}-a_{01}^{2} b_{2,-1} b_{01}, a_{10}^{2} a_{-12} b_{10}-a_{01} b_{2,-1} b_{01}^{2}\right\rangle$.

$$
\left\{\begin{array}{l}
\mathcal{A}(V):=a_{01}(|b|-1) \frac{\partial V}{\partial a_{01}}+a_{10}(1-|a|) \frac{\partial V}{\partial 1_{10}}+a_{-12}(|a|+2|b|-3) \frac{\partial V}{\partial a_{-12}} \\
+b_{01}(|b|-1) \frac{\partial V}{\partial b_{01}}+b_{10}(1-|a|) \frac{\partial V}{\partial b_{10}}+b_{2,-1}(-2|a|-|b|+3) \frac{\partial V}{\partial b_{2,-1}} \\
-V(|a|+|b|) \\
|a|=a_{10}+a_{01}+a_{-12}, \quad|b|=b_{01}+b_{10}+b_{2,-1} . \\
a_{01}^{3} b_{2,-1}-a_{-12} b_{10}^{3}=a_{10} a_{01}-b_{01} b_{10}=a_{10}^{3} a_{-12}-b_{2,-1} b_{01}^{3}= \\
a_{10} a_{-12} b_{10}^{2}-a_{01}^{2} b_{2,-1} b_{01}=a_{10}^{2} a_{-12} b_{10}-a_{01} b_{2,-1} b_{01}^{2}=0 .
\end{array}\right.
$$

The work was supported by the Slovenian Research Agency

Thank you for your attention!

