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FLAT SYSTEMS
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Examples…Monge – Petitot’s wheel

𝑠′ = 𝑢
𝑥′ = cos 𝛼 𝑢
𝑦′ = sin 𝛼 𝑢
𝛼′ = 𝑣

Linearizing outputs: (𝑧1 ∶= 𝑥 − cos 𝛼 𝑠, 𝑧2 ∶= 𝑦 − sin 𝛼 𝑠).

tan 𝛼 = −𝑧′1
𝑧′2

𝑧′1 = sin 𝛼 𝛼′ 𝑠
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Car
Flat outputs:

(𝑧1, 𝑧2); tan 𝛼 = 𝑧′2
𝑧′1 .

( ̂𝑧1, ̂𝑧2); tan 𝛼 = ̂𝑧′2
̂𝑧′1 .
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Mathematical definitions
Fliess, Lévine, Martin and Rouchon, 1991.

Differential algebra

Definition. — A differential field extension 𝒢/ℱ is flat if 𝒢/ℱ is
isomorphic to ℱ ⟨𝑧1, … , 𝑧𝑚⟩.
The generators of the differentialy transcendental extension 𝑧1, …𝑧𝑚
are flat outputs.

Some flat systems do not admit algebraic flat outputs.

𝑥′ = 𝑢, 𝑦′ = 𝑦𝑢 + 1; flat output: 𝑧 = 𝑒−𝑥𝑦 ;
parametrization 𝑥 = ln(𝑧′), 𝑦 = 𝑧/𝑧′.
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Diffiety theory (Vinogradov)

Definition. — A diffiety is a manifold of denumerable dimension,
equipped with a derivation or a vector field: the Cartan field 𝛿 (that
we will denote d𝑡).

The function on the manifold are 𝒞∞ and only depend on a finite
number of derivatives.

A morphism 𝜙 ∶ 𝑈𝛿1 ↦ 𝑉𝛿2 is such that 𝛿1 ∘ 𝜙∗ = 𝜙∗ ∘ 𝛿2. (Lie-Bäcklund
equivalence)

On may glue local charts to build new diffieties.
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Examples

T𝑚 is the trivial diffiety: (R𝑚)∞ with derivation

𝛿 ∶=
𝑚
∑
𝑖=1

∑
𝑘∈N

𝑢(𝑘+1)𝑗
𝜕

𝜕𝑢(𝑘)𝑗
.

R𝜕𝑡 where 𝜕𝑡 denote 𝜕/𝜕𝑡 .
The jet space J(R,R𝑚) is isomorphic to R𝜕𝑡 × T𝑚, with derivation de-
noted by d𝑡 .

Definition. — A diffiety is flat if it contains a dense open set𝑊 such
that any point 𝜂 ∈ 𝑊 admits a neighborhood isomorphic to an open
set of the jet space J(R,R𝑚). Such points are flat points.

Points around which no such isomorphism exists are flat singularities.
Kaminski, Lévine and FO, 2018.
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Local flatness necessary condition

We consider a system 𝑥′𝑖 = 𝑓𝑖(𝑥, 𝑢).

Theorem. — If a point (𝜉 , 𝜈) is flat, then the R[[𝑡]]d𝑡-module defined by
the linearized system at (𝜉 , 𝜈):

d𝑥′𝑖 =
𝑛
∑
𝑖=1

j(𝜉 ,𝜈)
𝜕𝑓
𝜕𝑥𝑖

d𝑥𝑖 +
𝑚
∑
𝑗=1

j(𝜉 ,𝜈)
𝜕𝑓
𝜕𝑢𝑗

d𝑢𝑗

is free.

Proof. — If 𝑧𝑖 = 𝑍𝑖(𝑥, 𝑢, 𝑢′, …) are flat outputs defined and regular at
(𝜉 , 𝜈), then d𝑍𝑖 is a basis of the module.

Kaminski, Lévine and FO 2020.
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Sluis and Rouchon’s criterion
Sluis 1993, Rouchon 1994.
Let 𝐷 ∶= ∑𝑛

𝑖=1 𝐶𝑖 𝜕
𝜕𝑥′𝑖

Theorem. — If a system such that 𝑃(𝑥 ′1, … , 𝑥 ′𝑛, 𝑥1, … , 𝑥𝑛) = 0 defines a
flat diffiety in some open space, then the homogeneous ideal (𝐷𝑘𝑃|𝑘 ∈
N) admits a non trivial solution.

Proof. If 𝑥𝑖 = 𝑋𝑖(𝑧1, … , 𝑧(𝑟1)1 , …), 𝑥 ′𝑖 = 𝜕𝑋𝑖/𝜕𝑧(𝑟1)1 𝑧(𝑟1+1)1 + ⋯
and (𝜕𝑋𝑖/𝜕𝑧(𝑟1)1 , … , 𝜕𝑋𝑛/𝜕𝑧(𝑟1)1 ) is a solution of this system.

A system that satisfies 𝑥′1 − (𝑥′2)2 = 0 is not flat, as the ideal contains
𝐶1 − 2𝑥2𝐶2 = 0 and 𝐶22 = 0, so that 𝐶1 = 𝐶2 = 0.
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Some History. Monge problem

Monge (1784) considered parametrizations such that the independent
variable could be parametrized too. Monge problem (Hilbert 1912,
Cartan 1914, 1915) is to decide if such a parametrization exists.

Closer to orbital flatness, allowing “time control”.

Monge 1784; ̇𝑠2 = ̇𝑥2 + ̇𝑦2 Petitot 1995.
In red, involute of the trajectory in blue.



JACOBI’S BOUND
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Carl Gustav Jacob (Jacques) Jacobi (1804-1851)
1812-1822 Edict of emancipation
Brother of Moritz Hermann (Moses) Jacobi (1801-1874)
Professor at Königsberg 1827-1843
1841 Bankrupt
Travels in Italy 1843–1844
1844– Berlin, Preußischen Akademie der Wissenschaften
1848 Revolution

Differential equations
Algebraic equations
Number theory
Tropical determinant, Graph theory and shortest paths
(1836-1845)
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From Königsberg to Berlin via Roma
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Posthumous manuscripts…
Most manuscripts are in the Archives of Berlin Academy. Some letters are in Insti-
tute Mittag-Leffler. Translations FO 2003–2009.

Proposition I.

“Let

𝑢1 = 0, 𝑢2 = 0, … , 𝑢𝑛 = 0,
be 𝑛 differential equations between the inde-
pendent variable 𝑡 and the dependent vari-
ables 𝑥1, 𝑥2, … , 𝑥𝑛 and let

𝑎(𝑖)𝑘
be the maximal order of the variable 𝑥𝑖 in the
equation 𝑢𝑘 = 0. Then, if one calls

𝜇
the maximum of the 1 ⋅ 2 ⋅ 3⋯ 𝑛 sums

𝑎′(𝑖′) + 𝑎″(𝑖″) + ⋯ + 𝑎(𝑛)𝑖(𝑛) ,
that one gets for all different indices 𝑖′, 𝑖″, … , 𝑖(𝑛)
chosen between indices 1, 2, … , 𝑛 ; 𝜇 will be the
order of the system of differential equations, or
also the the number of arbitrary constants that
its complete integration makes appear.”
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Quasi-regular components
Definition 1. — Let 𝑃𝑖 ∈ ℱ {𝑥1, … , 𝑥𝑛}, for 1 ≤ 𝑖 ≤ 𝑛 be differential
polynomials, 𝒫𝑘 be a prime component of {𝑃} = ⋃𝑞

𝑘=1𝒫𝑘 , and 𝒢/ℱ the
differential field extension it defines. It is said to be quasi-regular if the
family d𝑃 (𝑘)

𝑖 , for (𝑖, 𝑘) ∈ [1, 𝑛] × N is linearly independent in Ω𝒢/ℱ .
Johnson regularity hypothesis. 1969, 1977.

Definition 2. — Let 𝑃𝑖(𝑥1, … , 𝑥𝑛), 1 ≤ 𝑖 ≤ 𝑛 be a differential system.
Let 𝑎𝑖,𝑗 ∶= ord𝑥𝑗𝑃𝑖, with 𝑎𝑖,𝑗 ∶= −∞ if 𝑥𝑗 and its derivatives do not appear
in 𝑃𝑖. We denote by 𝐴𝑃 ∶= (𝑎𝑖,𝑗) the order matrix.
We call Jacobi number of the system 𝒪𝑃 ∶= max𝜎∈𝑆𝑛 ∑

𝑛
𝑖=1 𝑎𝑖,𝜎(𝑖).

Let 𝒫 be a component of {𝑃}. The order with respect to 𝒫 is defined by
ord𝒫 ,𝑥𝑗𝑃𝑖 = max{𝑘 ∈ N|𝜕𝑃𝑖/𝜕𝑥 (𝑘)𝑗 ∉ 𝒫 }. We define 𝐴𝒫 ,𝑃 = (𝑎𝒫 ,𝑖,𝑗) and
𝒪𝒫 ,𝑃 accordingly.

𝒪𝑃 is the tropical determinant of the order matrix 𝐴𝑃 .
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An improved statement

Definition 3. — Let ∇𝒫 ,𝑃 be obtained by keeping in the determi-
nant |𝜕𝑃𝑖/𝜕𝑥𝑗(𝑎𝒫 ,𝑖,𝑗)| only the terms 𝑒(𝜎)∏𝑛

𝑖=1 𝜕𝑃𝑖/𝜕𝑥𝜎(𝑖)(𝑎𝒫 ,𝑖,𝜎(𝑖)) such
that ∑𝑛

𝑖=1 𝑎𝒫 ,𝑖,𝜎(𝑖) = 𝒪𝒫 ,𝑃 . We call it the truncated determinant of 𝑃
with respect to 𝒫
Theorem 4. — If 𝒫 is a quasi-regular component of 𝑃 , the order of 𝒫
is at most 𝒪𝒫 ,𝑃 and equal to 𝒪𝒫 ,𝑃 iff ∇𝒫 ,𝑃 ∉ 𝒫 .

Kondratieva et al. 1982 for 𝒪𝑃 without the ∇𝑃 condition. Generaliza-
tion to PDE 2009.
Sadik and FO 2007 (for diffieties). FO 2022 for diff. algebra.



DART XI, London Friday June, 9th , 2023 18/49

Canons and minimal covers
Jacobi’s algorithm and the Hungarian Method
Definition 5. — A canon of 𝐴 is a vector ℓ such that (𝑎𝑖,𝑗 + ℓ𝑖) there
exist a permutation 𝜎 ∈ 𝑆𝑛 with 𝑎𝑖,𝜎(𝑖) + ℓ𝑖 maximal in its column.
A cover of 𝐴 is defined by vectors 𝜇 and 𝜈 such that 𝑎𝑖,𝑗 ≤ 𝜇𝑖 + 𝜈𝑗 .
To any canon ℓ, we associate a minimal cover (with ∑𝑛

𝑖=1(𝜇𝑖 + 𝜈𝑖) mini-
mal) defined by 𝜇𝑖 = max𝑛𝑘=1 ℓ𝑘 − 𝜇𝑖 and 𝜈𝑗 = max𝑛𝑖=1 𝑎𝑖,𝑗 − 𝜇𝑖.
Jacobi’s algorithm computes “in polynomial time” a unique minimal
canon. It is basically equivalent to Kuhn’s Hungarian method (1955)
for solving the affectation problem, using covers introduced by Jenő
Egerváry. Mariage problem with weights.
Mariage problem. Denés Kőnig 1931.
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Shortest path algorithm

Jacobi gave two other algorithms to compute a minimal canon.

The first, when a canon is known. It is equivalent to Dijkstra algo-
rithm for shortest paths 1959.

The second, when a permutation 𝜎 that provides the maximal sum
∑𝑛

𝑖=1 𝑎𝑖,𝜎(𝑖) is known. It is equivalent to Bellman (1956) and Ford’s
(1958) algorithm 1956.
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Proof of Jacobi’s bound

— First idea. Reduce to the linear case. This is quasi-regularity.

— Second idea. Reduce to constant coefficients. If ∇𝒫 ,𝑃 ∉ 𝒫 , then the
order of the module (d𝑃) considered as a constant coefficient linear
system or a time-varying one are the same.
(d/d𝑡)𝑐𝑥 (𝑎)𝑖 + ⋯ = 𝑐𝑥 (𝑎+1)𝑖 + ⋯

– Third idea. ∇𝒫 ,𝑃 is the coefficient of the term of degree 𝒪𝒫 ,𝑃 of the
characteristic polynomial of the square matrix of differential opera-
tors associated to d𝑃 .
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Shortest reduction

Theorem 6. — Let 𝑃𝑖, 1 ≤ 𝑖 ≤ 𝑛 be a system in 𝑛 differential indeter-
minates 𝑥1, …, 𝑥𝑛 that defines a diffiety 𝑉 in a neighborhood of a point
𝜂 ∈ J(R,R𝑚).
If ∇𝑃 does not vanish at 𝜂, there exists 𝜎 ∈ 𝑆𝑛 and an open set𝑊 ∋ 𝜂 such
that the diffiety admits in 𝑊 a normal form

𝑥 (𝛼𝜎−1(𝑗)+𝛽𝑗)𝑗 = 𝑓𝑗(𝑥),
so that the order of the diffiety is 𝒪Σ.
Sadik and FO 2007. Differential algebra version FO 2022.
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Posterity

Nanson 1876 and Jordan 1883. Heuristic approach for computing a
resolvent under foggy genericity hypotheses.

Chrystal 1895. Linear case with constant coefficients.

Ritt 1935, 1950 General linear case and 𝑛 ≤ 2.
Volevich 1960. Linear case (differential operators).

Kondratieva, Mikhalev and Pankratiev 1982. (Johnson’s regularity
hypothesis)

Shaleninov 1990, Pryce 2001. Shortest reduction.

Sadik and FO 2007. Diffieties. Underdetermined systems ∇.
FO 2022. Diff. algebra. Underdetermined systems, ∇, shortest reduc-
tion, change of orderings, resolvents.
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OUDEPHIPPICAL SYSTEMS
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Underdetermined systems
If the number of equation 𝑠 is smaller than the number of indeter-
minates, one may consider subsets 𝑌 ⊂ 𝑋 with ♯𝑌 = 𝑠 and Jacobi’s
number 𝒪𝑌 ,𝑃 considering only variables in 𝑌 .
Then, onemay define the the Jacobi number of 𝑃 as𝒪𝑃 = max♯𝑌=𝑠 𝒪𝑌 ,𝑃 .
It may be computed by completing𝐴𝑃 with 𝑛−𝑠 rows of 0. It is bounds
the order of the system 𝑃 completed with 𝑛−𝑠 generic equations of or-
der 0, which generalizes Jacobi’s bound to underdetermined systems.

It may be wiser to look for a set 𝑌 with 𝒪𝑌 ,𝑃 minimal.

How to compute the saddle Jacobi number of 𝑃 ̂𝒪𝑃 ∶= min♯𝑌=𝑠,𝒪𝑌 ,𝑃≠−∞ 𝒪𝑌 ,𝑃
efficiently?

By convention if 𝒪𝑌 ,Σ = −∞ for all 𝑌 , or if 𝑠 > 𝑛, we set ̂𝒪Σ = −∞. If
𝐴 is a matrix with entries in N ∪ {−∞}, we define ̂𝒪𝐴 accordingly.
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Underdetermined systems

Definition 7. — Systems Σ such that ̂𝒪Σ = 0 are called oudephippical∗

systems or ō-systems. A ō-system is called regular if there exists 𝑌 ⊂ 𝑋
such that ̂𝒪Σ = 𝒪𝑌 ,Σ and ∇𝑌 ,Σ does not identically vanish. It is said to be
regular at point 𝜂 if there exists 𝑌 ⊂ 𝑋 such that ̂𝒪Σ = 𝒪𝑌 ,Σ and ∇𝑌 ,Σ
does not vanish at 𝜂.
∗ From the Greek: ouden, “nothing” and ephippios, “saddle”.
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Lazy flat parametrization

Definition 8. — We say that a system 𝑃 ⊂ 𝑂(J(R,R𝑛)) of 𝑠 differen-
tial equations in 𝑛 variables 𝑥1, …, 𝑥𝑛 admits a lazy flat parametriza-
tion at 𝜂 ∈ J(R,R𝑛) with flat output 𝑍 if there exists a partition 𝑋 =
{𝑥1, … , 𝑥𝑛} = ⋃𝑟

ℎ=0 Ξℎ, with Ξ0 = 𝑍 , and an open neighborhood 𝑉 of 𝜂,
such that for all 0 < ℎ ≤ 𝑟 and all 𝑥𝑖0 ∈ Ξℎ, there exists an equation
𝑥𝑖0 − 𝐻𝑖0(Ξ0, … , Ξ𝑟−1), where 𝐻𝑖0 is a differential function defined on 𝑉
that belongs to the “algebraic” (not differential) ideal generated by 𝑃 in
𝑂(𝑉 ).
It is easilly checked that a system 𝑃 admitting a lazy flat parametriza-
tion with flat output 𝑍 = Ξ0 is flat.
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Main result

Theorem 9. — i) A ō-system 𝑃 , which is regular at point 𝜂, admits a
lazy flat parametrization at point 𝜂.
ii) A system 𝑃 that admits a lazy flat parametrization at point 𝜂 with
flat output 𝑍 and such that ∇𝑋⧵𝑍,Σ(𝜂) ≠ 0 is a regular ō-system at point
𝜂.
iii) If the system 𝑃 is a ō-system, regular at point 𝜂 with ∇𝑌 ,𝑃(𝜂) ≠ 0 it
is flat at 𝜂 with flat output 𝑋 ⧵ 𝑌 .
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Efficient criteria

There exists an algorithm that test if ̂𝒪𝑃 = 0 in 𝑂(𝑠5/2𝑛) operations.

If 𝜂 is a point of the diffiety defined by 𝑃 in some open space, then there
exists an algorithm to test if 𝑃 is ō-regular at 𝜂 in 𝑂(𝑠4𝑛) elementary
operations.
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Examples
Goursat normal forms for driftless systems with two imputs.

𝑧′0 = 𝑣0;
𝑧′𝑖 = 𝑧𝑖+1𝑣0 for 1 ≤ 𝑖 ≤ 𝑛 − 2;
𝑧′𝑛−1 = 𝑣1,

(1)

Affine generalizations Silveira 2010, Silveira, Pereira da Silva, Rou-
chon 2015.

𝑧′0 = 𝑣0;
𝑧′𝑖 = 𝑓𝑖(𝑧0, 𝑧1, … , 𝑧𝑖+1) + 𝑧𝑖+1𝑣0 for 1 ≤ 𝑖 ≤ 𝑛 − 2;
𝑧′𝑛−1 = 𝑣1.

(2)
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𝑚-chained form. Li, Nicolau, Respondek 2016.

𝑧′0 = 𝑣0;
𝑧′𝑖,ℓ = 𝑓𝑖,ℓ(𝑧0, ̄𝑧ℓ) + 𝑧𝑖,ℓ+1,𝑣0 for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ ℓ < 𝑘;
𝑧′𝑖,𝑘 = 𝑣𝑖,

(3)
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Block diagonal systems
Definition 10. — An order 1 block triangular systems is a system
Σ in the variables Ξ such that there exist partitions Σ = ⋃𝑝

ℎ=1 Σℎ and
Ξ = ⋃𝑝

ℎ=0 Ξℎ such that all equations in Σ𝑖 depend only in variables in
⋃𝑖

𝑘=0 Ξ𝑘 and are of order 1 in variables of Ξ𝑖−1 and 0 at most in the other
variables, with
i) ♯Ξℎ−1 = ♯Σℎ;
ii) 𝒪𝑋𝑖ℎ−1 ,Σℎ = ♯Ξℎ−1;
iii) 𝒪𝑋𝑖ℎ ,Σℎ = 0.
An order 1 block triangular system is said to be chained at level ℎ > 0
if all equations in Σℎ depend only in variables in Ξℎ ∩ Ξℎ−1. It is said to
be stricly chained if is chained at level ℎ and the equation in Σℎ depend
only in derivatives of order 1 of the variables in Ξℎ−1 and not of those
variables themselves.
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Sufficient condition of flat singularity
Theorem 11. — Let Σ = ⋃𝑝

𝑖=1 Σℎ be a block diagonal system in the
variables⋃𝑝

ℎ=0 Ξℎ, chained at level ℎ0 and strictly chained at level ℎ0−1,
and such that all variables in Ξℎ0−1 ∪ Ξℎ0 are constants along a given
trajectory. Let 𝜂 denote a point of this trajectory.
Assume moreover that the Jacobian matrix

(𝜕𝑃𝜕𝑥 ∣ (𝑃, 𝑥) ∈ Σℎ0 × Ξℎ0) (4)

has rank 𝑚0 < ♯Ξℎ0−1 and that the Jacobian determinants

|𝜕𝑃𝜕𝑥 ∣ (𝑃, 𝑥) ∈ Σℎ0 × Ξℎ0−1| (5)

do not vanish at 𝜂 for all 1 ≤ ℎ ≤ 𝑝.
With these hypotheses, Σ is not flat at 𝜂.
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Aircraft equations
12 state variables, 12 equations, 4 controls.
50 parameters.

Ξ1 ∶= {𝑥, 𝑦 , 𝑧}: center of gravity.
Ξ2 ∶= {𝑉 , 𝛾 , 𝜒}: speed, flight path angle, aerodynamic azimuth or
heading angle.
Ξ3 ∶= {𝛼, 𝛽, 𝜇, 𝐹 }: angle of attack, sideslip angle, bank angle, thrust.
Ξ4 ∶= {𝑝, 𝑞, 𝑟}: coordinates of the angular velocity vector.
Ξ5 ∶= {𝛿𝑙 , 𝛿𝑚, 𝛿𝑛}: aileron, elevator and rudder deflexion.

Controls: 𝐹 , 𝛿𝑙 , 𝛿𝑚, 𝛿𝑛 (may be replaced by 𝜂 ∶= 𝐹1−𝐹2
𝐹1+𝐹2

if rudder is lost
(differential thrust control).
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Aerodynamics. The GNA models
Thanks to the NASA and US tax-payers.

Old planes: Twin Otter, F-4, F-16.

And the GTM, a 5.5% model of a transport plane.
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Shape of equations. A nearly chained system
We have:

Ξ′1 = 𝑓1(Ξ2): Ξ2 may be computed if 𝛾 ≠ 0.
Ξ′3 = 𝑓3([𝑧], Ξ2, Ξ3, Ξ4): Ξ4 may be computed if 𝛾 ≠ 0 (linear).
Ξ′4 = 𝑓3([𝑧], Ξ2, Ξ3, Ξ4, Ξ5): Ξ4 may be computed (linear using GNA).

Ξ′2 = 𝑓1([𝑧], Ξ2, Ξ3, [Ξ4, Ξ5]): one may compute Ξ3 with some simpli-
fication.

The simplifiedmodel is flat, using flat outputs 𝑥, 𝑦 , 𝑧 and 𝜁 ∈ {𝛼, 𝛽, 𝜇, 𝐹 }.

Martin 1992 for 𝜁 = 𝛽
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Stalling condition
Maximal lift 𝜕�̂�/𝜕𝛼 = 0; speed 𝑉 such that the lift is equal to gravity.

Theorem 12. — Let a trajectory be such that 𝛼 , 𝛽 , 𝜇, 𝐹 , 𝛾 , 𝜒 and 𝑉 are
constants, with moreover 𝛽 = 𝜇 = 0, 𝛼 and 𝑉 respectively equal to the
stall a.o.a. and stall speed. A point 𝑒𝑡𝑎 of this trajectory is not flat.
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Computing the parametrization using power series
Easy computation (lazy flat parametrization).
The evaluation is done with constant step: 1 sec is fine in most situ-
ations.
We want to have an evaluation of the 𝛿𝑖 at order 2.
We compute the series for 𝑥 , 𝑦 , 𝑧 at order 6, 𝜁 at order 4.
For 𝑉 , 𝛾 , 𝜉 , we use the formulas: 𝑉 = √(𝑥′)2 + (𝑦′)2 + (𝑧′)2,
𝜉 = atan(𝑦′/𝑥′), …
For 𝛼 , 𝛽 , 𝜇, 𝐹 , we need to solve a non linear system. Sustitutions
reduce to a system of 2 equations, then we use a numerical Newton
method for the constant term, and then Newton method for series.
The case of Ξ4 and Ξ5 is easy, as the systems are linear.
Data are kept in an array to be used to compute values between 𝑡𝑖 and
𝑡𝑖+1 by interpolation.
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Feed-back
We use feed-back to correct model errors.
We work in the linearized system around the planed trajectory.
The differentials δ𝑥 , δ𝑦 , …stand for the differences between the planned
values and the values computed by the integrator.

We need to introduce 𝑖𝑥 = ∫𝑡𝑡0 δ𝑥(𝜏)d𝜏 , … for better accuracy.

In fact, we take 𝑖�̃� ∶= ∫𝑡𝑡0(cos(𝜉 )δ𝑥 + sin(𝜉 )δ𝑦)(𝜏 )d𝜏 and

𝑖 ̃𝑦 ∶= ∫𝑡𝑡0(− sin(𝜉 )δ𝑥 + cos(𝜉 )δ𝑦)(𝜏 )d𝜏 to preserve symetries.
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We compute d𝐹 , and the d𝛿𝑖, so that

∏3
𝑖=1(d/d𝑡 − 𝜆1,𝑖)𝑖�̃� = 0;

∏5
𝑖=1(d/d𝑡 − 𝜆1,𝑖)𝑖 ̃𝑦 = 0;

∏5
𝑖=1(d/d𝑡 − 𝜆1,𝑖)𝑖 ̃𝑧 = 0;

∏3
𝑖=1(d/d𝑡 − 𝜆1,𝑖)𝑖 ̃𝜁 = 0,

for 𝜁 = 𝛽 or 𝜇.
Again, the formulas are kept in an array to be used by numerical func-
tions during integration.

The choice of suitable 𝜆𝑖,𝑗 may be difficult and require many repeated
experiments.
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Generalized flatness
Basic idea. Step zero. Motion planning using the simplified model, i.e.
setting 𝑝, 𝑞, 𝑟 and the 𝛿𝑖 to 0. It provides an evaluation for 𝑝, 𝑞, 𝑟 and
the 𝛿𝑖.
Step 𝑗 + 1. Motion planning, using the values 𝑝, 𝑞, 𝑟 and the 𝛿𝑖 com-
puted at step 𝑗.

To get the controls 𝛿𝑖 at order 2, we need to start with 𝑥, 𝑦 , 𝑧 at order
6 + 2𝐽 , going to step 𝐽 .

Folkloric idea. All systems would be flat if one could use an infinite
number of derivatives. Cf. Sluis and Rouchon.
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Some numerical experiments
Implementation in Maple.

http://www.lix.polytechnique.fr/~ollivier/GFLAT/
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Aileron roll and parabolic flight. GTM
𝜆𝑖,𝑗 : [2., 2., 2.], [2., 2., 2., 2., 2.], [2., 2., 2., 2., 2.], [2., 2., 2.]
𝑥 = 100km/h𝑡 , 𝑦 = 0., 𝑧 = −1000 + g𝑡2/2, 𝜇 = 𝜋𝑡/2.
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Curves
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Convergence?
Values for the controls 𝐹 , 𝛿𝑙 , 𝛿𝑚 and 𝛿𝑛 at 𝑡 = −1.9.

𝐽 = 0 𝐽 = 1 𝐽 = 2 𝐽 = 3 𝐽 = 4 𝐽 = 5 𝐽 = 6 𝐽 = 7
𝐹 −2.36 8.40 8.56 8.610 8.624 8.628 8.6304 8.6309
𝛿𝑙 −0.44 −0.45 −0.462 −0.4642 −0.4647 −0.4648 −0.46493 −0.464918
𝛿𝑚 0.04 0.04 0.039 0.0389 0.0387 0.03872 0.038730 0.038731
𝛿𝑛 0.05 0.07 0.085 0.0871 0.087 0.08800 0.087997 0.0880978
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Thanks !


