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Symbolic integration

Let A be a class of functions. (e.g. A =Q(x), Q(x)(v/x))
Integration Problem. Given f(x) € A, decide whether 3 g(x) € A s.t.

If such a g exists, we say f is integrable in A.
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Symbolic integration

Let A be a class of functions. (e.g. A =Q(x), Q(x)(v/x))
Integration Problem. Given f(x) € A, decide whether 3 g(x) € A s.t.

If such a g exists, we say f is integrable in A.

Additive Decomposition Problem. Given f € A, compute g,r € A
s.t.
f=g+r
with the following two properties:
» (minimality) r is minimal in some sense,
» (integrability) f is integrablein A & r=0.



Symbolic integration

Let A be a class of functions. (e.g. A =Q(x), Q(x)(v/x))

Integration Problem. Given f(x) € A, decide whether 3 g(x) € A s.t.

If such a g exists, we say f is integrable in A.

Creative Telescoping Problem (Motivation). If f € A depends on x
and 1, find g € A and a nonzero linear differential operator L(¢,D;)
s.t.

telescoper certificate
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Hermite reduction

Rational case.

» Theorem (Ostrogradsky 1845, Hermite 1872). Let f € C(x).
Then u
f=g¢+h with h= b

where deg, (a) < deg,(b) and b is squarefree. Moreover

f is integrable in C(x) & a=0.
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Hermite reduction

Algebraic case.

» Theorem (Trager 1984). Let f € A= C(x)[yl/(m) and
{wi,...,w,} be an integral basis. Then

Z:zzl aiwi

f=g¢+h with h= , ,

where a;,b € Clx] and b is squarefree.
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Hermite reduction

Algebraic case.

» Theorem (Trager 1984). Let f € A= C(x)[yl/(m) and
{wi,...,w,} be an integral basis. Then

Z:lzl aiwi

f=g¢+h with h= , ,

where a;,b € Clx] and b is squarefree.

Remark.

» How to decide the integrability of f in A7
(Trager 1984; Chen, Kauers, Koutschan, 2016.)
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Integral bases: two cases

Algebraic case

» A=C(x)lyl/(m), where m € C(x)[y] is irreducible

b f € Ais integral iff for all a € C, f(b) is integral for each
Puiseux series solution b of m at x =«

b The integral elements of A form a free Clx]-module.
» Computation: van Hoeij's algorithm 1994, etc.



Integral bases: two cases

Algebraic case

» A=C(x)lyl/(m), where m € C(x)[y] is irreducible

b f € Ais integral iff for all a € C, f(b) is integral for each
Puiseux series solution b of m at x =«

b The integral elements of A form a free Clx]-module.
» Computation: van Hoeij's algorithm 1994, etc.

D-finite case

» A=C(x)[D]/(L), Dx =xD+ 1, where L € C(x)[D].

b f €A is integral iff for all a € C, f(b) is integral for each
generalized series solution b of L at x =«

b The integral elements of A form a free Clx]-module.

» Computation: Kauers and Koutschan's algorithm 2015,
Aldossari and van Hoeij's algorithm 2020.



D-finite functions

Definition. A function f(x) is called D-finite over Clx] if

Po(x) £(x) +pi (X)f'(x) + -+ pa(x)f" (x) =0 for p; € Cl.
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D-finite functions

Definition. A function f(x) is called D-finite over Clx] if
po(x) £(x) +p1(x)f (x)+ -+ pu(x)fW (x) =0 for p; € CIxl.
Examples.

1 1
1
o Y exp(x), log(x),

Question. Assume y satisfies x3y” (x) + (3x%> +2)y(x) = 0. Compute

Jydx



D-finite functions: solution space

Setting.
b L=po(x)+pi(x)D+---+p,(x)D" € CIxI[D] with p, #0.
» A=C(x)[D]/(L), Dx=xD+1.
b 1€ A represents a solution y of L. Indeed, L-1=L=0in A.
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» Operator action: for any function f(x)
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D-finite functions: solution space

Setting.
b L=po(x)+pi(x)D+---+p,(x)D" € CIxI[D] with p, #0.
» A=C(x)[D]/(L), Dx=xD+1.
b 1€ A represents a solution y of L. Indeed, L-1=L=0in A.

» Operator action: for any function f(x)

L-f = po(x)f (x) +pi (x)f' (x) + -+ pa (2} (x).

b Solution space:
L-f=0
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D-finite functions: solution space

Theorem. Let L € C(x)[D]. Then for each o € C, L admits n
linearly independent generalized series solutions of the form

exp(P((x—a)™)) (x—a)’ Q((x—a):,log(x—a))

where se N, Pc Clx], v € C, Q€ Clx]l[y] with Q(0,y) #0.



D-finite functions: solution space

Theorem. Let L € C(x)[D]. Then for each o € C, L admits n
linearly independent generalized series solutions of the form

lexp(Pllx—a) )| (x— )" O((x— ), log(x—a))

exponential part

where se N, Pc Clx], v € C, Q€ Clx]l[y] with Q(0,y) #0.
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D-finite functions: solution space
Theorem. Let L € C(x)[D]. Then for each o € C, L admits n

linearly independent generalized series solutions of the form

(x—a)" Q((x— )+, log(x— a))

where se N, Pc Clx], v € C, Q€ Clx]l[y] with Q(0,y) #0.
Definition. Such a series is called integral at a if v > 0.

Remark.
p f P=0, s=1 for all & € CU{c0}, then L is called Fuchsian.



D-finite functions: solution space

Theorem. Let L € C(x)[D]. Then for each o € C, L admits n
linearly independent generalized series solutions of the form

[GXP(P((JC—OC)_%))] (x—a)"] Q((x— @)+, log(x—a))

exponential part
where s e N, Pe Clx], v e C, Q € Clix]l[y] with Q(0,y) #0.
Definition. Such a series is called integral at a if v > 0.

Remark.
p f P=0, s=1 for all & € CU{c0}, then L is called Fuchsian.
» Hermite reduction for Fuchsian D-finite functions:

Chen, van Hoeij, Kauers, Koutschan 2017



D-finite functions: solution space

Theorem. Let L € C(x)[D]. Then for each o € C, L admits n
linearly independent generalized series solutions of the form

[CXP(P((x—OC)_%))] (x—a)"] Q((x— @)+, log(x—a))

exponential part
where s e N, Pe Clx], v e C, Q € Clix]l[y] with Q(0,y) #0.
Definition. Such a series is called integral at a if v > 0.

Example. f =exp(x~2) is integral at 0, but

f'=—2xexp(x?) is not integral at 0.



D-finite functions: solution space

Theorem. Let L € C(x)[D]. Then for each o € C, L admits n
linearly independent generalized series solutions of the form

[eXP(P((x—OC)_%))] (x—a)"] Q((x— @)+, log(x—a))

exponential part
where se N, Pc Clx], v € C, Q€ Clx]l[y] with Q(0,y) #0.
Definition. Such a series is called integral at a if v > 0.
Example. f =exp(x~2) is integral at 0, but
f'=—2xexp(x?) is not integral at 0.

The valuation v is decreased by 3, not 1.

This is different from the algebraic and Fuchsian cases.



D-finite functions: integral bases

Definition. An element P € A = C(x)[D]/(L) is called integral if for
eachaeC
P-f s integral

for each series solution f of L.
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eachaeC
P-f s integral

for each series solution f of L.

Theorem. The set O of all integral elements of A forms a free
C[x]-module of rank n.
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D-finite functions: integral bases

Definition. An element P € A = C(x)[D]/(L) is called integral if for
eachaeC
P-f s integral

for each series solution f of L.

Theorem. The set O of all integral elements of A forms a free
C[x]-module of rank n.

Definition. A basis for this module O is called an integral basis.



D-finite functions: obstacle

Consider A = C(x)[D]/(L) as a left C(x)[D]-module.
Let W ={wy,...,w,} be an C(x)-vector space basis of A. Then

1
W' =-MW, where ecClx], M Ck]"™"
e
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e

Problem. If W is an integral basis, then e may not be squarefree
for non-Fuchsian D-finite functions.
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D-finite functions: obstacle

Consider A = C(x)[D]/(L) as a left C(x)[D]-module.
Let W ={wy,...,w,} be an C(x)-vector space basis of A. Then

1
W' =-MW, where ecClx], M Ck]"™"
e

Problem. If W is an integral basis, then e may not be squarefree
for non-Fuchsian D-finite functions.

Example. Let L =xD?+ (3x% +2)D € Q(x)[D] with two solutions

yilx) =1 and y(x) =exp(x?).

Then W ={1,x’D} is an integral basis, but e = x> is not squarefree.

(i) =50 5) ()
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D-finite functions: an example

Example. Let L =x’D?+ (3x*>+2)D € Q(x)[D].

» W={w;,m}=1{1,xD}is an integral basis.
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Example. Let L =x’D?+ (3x*>+2)D € Q(x)[D].

» W={w;,m}=1{1,xD}is an integral basis.

» Consider
a0 +ar
e
uy
where
a; = —2x° —x4, a, =—2+3x% —3x4,

u=1, V=ux, k=4.
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D-finite functions: an example

Example. Let L =x’D?+ (3x*>+2)D € Q(x)[D].

» W={w;,m}=1{1,xD}is an integral basis.

» Consider
a0 +ar
e
uy
where
a; = —2x° —x4, a, =—2+3x% —3x4,

u=1, V=ux, k=4.
p Task. Reduce the multiplicity k at v.

~>  the goal of Hermite reduction for D-finite functions
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D-finite functions: an example

Example. Let L =x’D?+ (3x*>+2)D € Q(x)(D).

» Hermite reduction. Find by,bs,c1,c € Qlx] such that

ay®+ax@, (b0 +bynp\' o+
uvk _( vkl ) uk—1~

Task. Reduce the multiplicity k to k—1.
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D-finite functions: an example

Example. Let L =x’D?+ (3x*>+2)D € Q(x)(D).

» Hermite reduction. Find by,bs,c1,c € Qlx] such that
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» Multiplying by uv**? and module v* yield that
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% 1%
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(o) =0 5) (@)

where
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Example. Let L =x’D?+ (3x*>+2)D € Q(x)(D).

» Hermite reduction. Find by,bs,c1,c € Qlx] such that
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» Multiplying by uv**? and module v* yield that
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D-finite functions: an example

Example. Let L =x’D?+ (3x*>+2)D € Q(x)(D).

» Hermite reduction. Find by,bs,c1,c € Qlx] such that

ay®+ax@, (b0 +bynp\' o+
uvk _( vkl ) uk—1~

» Multiplying by uv**? and module v* yield that
V(ay @ +aran) = by (—3x° @) + @) — (3x° +2)br @ mod v,
» Equating the coefficients of w;, we have
2 2
apv’\ | [—3x 0 by 3
<a2v2> _[< 1 —3x2—2>]<b2> mod v

. |
not invertible over Q[x]/(»?)
But the linear system has a solution.

12/19



D-finite functions: an example

Example. Let L =x’D?+ (3x*>+2)D € Q(x)(D).

» Hermite reduction. Find by,bs,c1,c € Qlx] such that
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D-finite functions: an example

Example. Let L =x’D?+ (3x*>+2)D € Q(x)(D).

» Hermite reduction. Find by,bs,c1,c € Qlx] such that

ay®+ax@, (b0 +bynp\' o+
uvk _( vkl ) uk—1~

» Multiplying by uv**? and module v* yield that
Vi (a101 +aran) = by (=3x%0) + @) — (3x* +2)br @, mod V2.

» So b] = %xz, b2 = %Xz.

» Consequently,

220 +4%@\ (—4—32) o + (13 —9) o,
f= 3 + 2
3x 3x



D-finite functions: Hermite reduction

Let W = (wy,...,®,) be an integral basis of A and let eW' =MW.

Problem. Let v be a squarefree polynomial such that v* | e and
ged(e/vh,v) = 1. Let k> max{1,A}. Find b;,c; € Clx] to reduce the
multiplicity k:

2 GO <Z?—1 b,-a),->’+ 2 i Ci

uvk yk—1 uvk—1
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D-finite functions: Hermite reduction

Let W = (wy,...,®,) be an integral basis of A and let eW' =MW.

Problem. Let v be a squarefree polynomial such that v* | e and
ged(e/vh,v) = 1. Let k> max{1,A}. Find b;,c; € Clx] to reduce the
multiplicity k:

uvk yk—1 uvk—1

2 GO <Z?—1 b,-a),->’+ 2 i Ci

Case 1. If A =0, then v is coprime with e and

n

iaiwi = Z —(k—1)bjuv'@; modv
i=1

i=1
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D-finite functions: Hermite reduction

Let W = (wy,...,®,) be an integral basis of A and let eW' =MW.

Problem. Let v be a squarefree polynomial such that v* | e and
ged(e/vh,v) = 1. Let k> max{1,A}. Find b;,c; € Clx] to reduce the
multiplicity k:

uvk yk—1 uvk—1

2 GO <Z?—1 b,-a),->’+ 2 i Ci
Case 2. If A > 1, then

n n
_ _ w; '
E VW laga = E biuvkt* 1(1(7—11) mod v*
i—1 i=1 v
= =
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D-finite functions: Hermite reduction

Case 2. If A > 1, then

. /
e krA—1 [ D A
E a;0; = E b;uv (k 1) mod v
\—/—/

Yi
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D-finite functions: Hermite reduction

Case 2. If A > 1, then

n
!
A—1 _ ka1 [ Wi A
v :E bijuv (—kal) mod v (1)
=l  N—~————
Vi

integral
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D-finite functions: Hermite reduction

Case 2. If A > 1, then

] Yi
integral

Lemma. {y1,...,y,} is linearly independent over C(x).
So (1) has a solution in C(x)".

_ o; \/
yA-l Za,a), Zb kA= 1( kll) mod v*
\—,_/
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D-finite functions: Hermite reduction

Case 2. If A > 1, then

. !
Zb uyf A ( ]foll> mod v* (1)
\—,_/

Yi

integral

Lemma. {y1,...,y,} is linearly independent over C(x).
So (1) has a solution in C(x)".

Existence of b;. Let h = M%Z?:lbiw,- with b; € C(x). If 1L =1,
then yq,...,y, is a local integral basis at all roots of v. So

his integral = b; has no pole at all roots of v fori=1,...,n
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Existence of b;. Let h = M%Z?:lbiw,- with b; € C(x). If 1L =1,
then yq,...,y, is a local integral basis at all roots of v. So

his integral = b; has no pole at all roots of v fori=1,...,n

—  Equation (1) has a solution in Clx]/(v*)

Fuchsian case (Chen, van Hoeij, Kauers, Koutschan 2017)
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D-finite functions: Hermite reduction

Case 2. If A > 1, then

. !
Zb uyf A ( ]foll> mod v* (1)
\—,_/

Yi

integral

Lemma. {y1,...,y,} is linearly independent over C(x).
So (1) has a solution in C(x)".

Existence of b;. Let h = vl%l > i1 biy; with b; € C(x). Then

his integral = b; has no pole at all roots of v fori=1,...,n

—  Equation (1) has a solution in Clx]/(v*)

Non-Fuchsian case (Chen, Du, Kauers, 2023)
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D-finite functions: Hermite reduction at infinity

Example. Let L =x’D?+ (3x*>+2)D € Q(x)[D].

» After Hermite reduction at finite places, we get

220 +42w \ | (—4—3x%) @ + (13—9x2) o
= 3 + 2
3x 3x
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D-finite functions: Hermite reduction at infinity

Example. Let L =x’D?+ (3x*>+2)D € Q(x)[D].

» After Hermite reduction at finite places, we get

20, +4 ! 4 13 _
f= ST H—l—x? )+ 3+—x?) an,
3x 3 3

h

» {@1,m} ={1,x’D} is also a local integral basis at infinity.
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D-finite functions: Hermite reduction at infinity

Example. Let L =x’D?+ (3x*>+2)D € Q(x)[D].

» After Hermite reduction at finite places, we get

20, +4 ! 4 13 _
f= ST H—l—x? )+ 3+—x?) an,
3x 3 3

h

» {@1,m} ={1,x’D} is also a local integral basis at infinity.

» Reducing the valuation at infinity (the degree in x) by Hermite
reduction at infinity yields that

4 2
h=(— -3 o — =
(—x; —3xm;) 32?0 T 32?2
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D-finite functions: symbolic integration

The remainder h of Hermite reduction at finite places is
n i n 5
— o — o Lo P
f=g+th=g ~I—; da),~|—; et
i= i=

where deg(r;) < deg(d) and d is squarefree.

Remarks.

» An integral basis may not be a local integral basis at infinity.
(Aldossari 2020: 3 an integral basis that is normal at infinity.)
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Remarks.
» An integral basis may not be a local integral basis at infinity.
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b After performing Hermite reduction at infinity, we can confine
s;'s into a finite dimensional vector space over C.
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The remainder h of Hermite reduction at finite places is
n i n 5
!/ !/ 1 l
= h= — ; —j,
I oL

where deg(r;) < deg(d) and d is squarefree.
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» An integral basis may not be a local integral basis at infinity.
(Aldossari 2020: 3 an integral basis that is normal at infinity.)

b After performing Hermite reduction at infinity, we can confine
s;'s into a finite dimensional vector space over C.

» By Gauss elimination, further decompose f as f =g’ +r s.t.
fisintegrableinA & r=0.
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D-finite functions: symbolic integration

The remainder h of Hermite reduction at finite places is

n n
! ! ri o Si
f=g+h=g ~|—ZE(0,~I—Z€(0,,
i=1 i=1

where deg(r;) < deg(d) and d is squarefree.

Remarks.

>

An integral basis may not be a local integral basis at infinity.
(Aldossari 2020: 3 an integral basis that is normal at infinity.)

After performing Hermite reduction at infinity, we can confine
s;'s into a finite dimensional vector space over C.

By Gauss elimination, further decompose f as f = g’ +r s.t.
fisintegrableinA & r=0.

Creative telecoping: Let f € A = C(t,x)(Dy,Dy)/I. Find a
nonzero T € C(t)(D,) and g € A such that 7(7,D,)(f) = D«(g).
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D-finite functions: an example (continued)

Example. Let L =x>D?+ (3x>+2)D € Q(x)[D).

b After Hermite reduction at finite places and at infinity, we get

f= 2 0 + A 3 , 4(0—i
AT A 3 ®2 32 ! 3x2w2'
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D-finite functions: an example (continued)

Example. Let L =x>D?+ (3x>+2)D € Q(x)[D).

b After Hermite reduction at finite places and at infinity, we get

f= 2 0 + A 3 , 4(0—i
AT A 3 ®2 32 ! 3x2w2'

» All integrable Hermite remainders are:

2 1 1 2
U:SpanQ —;(D]—;wz, ;@7 —;@ .
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D-finite functions: an example (continued)

Example. Let L =x>D?+ (3x>+2)D € Q(x)[D).

b After Hermite reduction at finite places and at infinity, we get
5 2 ot 4 ; "4 ° 2
=|(=—x — —3x — O — = 0.
3x ! 3x @ 32N T 32 ®
» All integrable Hermite remainders are:
2 1 1 2
U = spang _;wl—;wz; x*30)27 _)73(02 .
» Sof is integrable in A:

2 2 4 1 !
=((F3)or(G5)e)
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Comparison with other reduction algorithms
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Summary

Main results.
» Hermite reduction for univariate D-finite functions

b new telescoping algorithm for bivariate D-finite functions

Implementation.

) https://github.com/LixinDu/HermiteReduction

Future work.

» applications of integral bases to symbolic summation
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» applications of integral bases to symbolic summation
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