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Symbolic integration

Let A be a class of functions. (e.g. A =Q(x), Q(x)(
√

x))

Integration Problem. Given f (x) ∈ A, decide whether ∃ g(x) ∈ A s.t.

f (x) = g′(x).

If such a g exists, we say f is integrable in A.
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Integration Problem. Given f (x) ∈ A, decide whether ∃ g(x) ∈ A s.t.

f (x) = g′(x).

If such a g exists, we say f is integrable in A.

Additive Decomposition Problem. Given f ∈ A, compute g,r ∈ A
s.t.

f = g′+ r

with the following two properties:

(minimality) r is minimal in some sense,

(integrability) f is integrable in A ⇔ r = 0.
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Symbolic integration

Let A be a class of functions. (e.g. A =Q(x), Q(x)(
√

x))

Integration Problem. Given f (x) ∈ A, decide whether ∃ g(x) ∈ A s.t.

f (x) = g′(x).

If such a g exists, we say f is integrable in A.

Creative Telescoping Problem (Motivation). If f ∈ A depends on x
and t, �nd g ∈ A and a nonzero linear di�erential operator L(t,Dt)
s.t.

L(t,Dt)︸ ︷︷ ︸( f ) = Dx( g︸︷︷︸)
telescoper certi�cate
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Hermite reduction

Rational case.

Theorem (Ostrogradsky 1845, Hermite 1872). Let f ∈ C(x).
Then

f = g′+h with h =
a
b
,

where degx(a)< degx(b) and b is squarefree. Moreover

f is integrable in C(x) ⇔ a = 0.
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Hermite reduction

Algebraic case.

Theorem (Trager 1984). Let f ∈ A = C(x)[y]/⟨m⟩ and
{w1, . . . ,wn} be an integral basis. Then

f = g′+h with h =

∑n
i=1 aiwi

b
,

where ai,b ∈ C[x] and b is squarefree.
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Hermite reduction

Algebraic case.

Theorem (Trager 1984). Let f ∈ A = C(x)[y]/⟨m⟩ and
{w1, . . . ,wn} be an integral basis. Then

f = g′+h with h =

∑n
i=1 aiwi

b
,

where ai,b ∈ C[x] and b is squarefree.

Remark.

How to decide the integrability of f in A?
(Trager 1984; Chen, Kauers, Koutschan, 2016.)
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Integral bases: two cases

Algebraic case

A = C(x)[y]/⟨m⟩, where m ∈ C(x)[y] is irreducible
f ∈ A is integral i� for all α ∈ C̄, f (b) is integral for each
Puiseux series solution b of m at x = α

The integral elements of A form a free C[x]-module.

Computation: van Hoeij's algorithm 1994, etc.

D-�nite case

A = C(x)[D]/⟨L⟩, Dx = xD+1, where L ∈ C(x)[D].

f ∈ A is integral i� for all α ∈ C̄, f (b) is integral for each
generalized series solution b of L at x = α

The integral elements of A form a free C[x]-module.

Computation: Kauers and Koutschan's algorithm 2015,

Aldossari and van Hoeij's algorithm 2020.
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D-�nite functions

De�nition. A function f (x) is called D-�nite over C[x] if

p0(x) f (x)+p1(x)f ′(x)+ · · ·+pn(x)f (n)(x) = 0 for pi ∈ C[x].

Examples.

1
x2 +2x

,
1√

x+1
, exp(x) , log(x), · · ·

Question. Assume y satis�es x3y ′′(x)+(3x2 +2)y(x) = 0. Compute∫
ydx
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D-�nite functions: solution space

Setting.

L = p0(x)+p1(x)D+ · · ·+pn(x)Dn ∈ C[x][D] with pr ̸= 0.

A = C(x)[D]/⟨L⟩, Dx = xD+1.

1 ∈ A represents a solution y of L. Indeed, L ·1 = L = 0 in A.

Operator action: for any function f (x)

L · f = p0(x)f (x)+p1(x)f ′(x)+ · · ·+pn(x)f (n)(x).

Solution space:

L · f = 0
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D-�nite functions: solution space

Theorem. Let L ∈ C(x)[D]. Then for each α ∈ C̄, L admits n
linearly independent generalized series solutions of the form

exp(P((x−α)−
1
s )) (x−α)ν Q((x−α)

1
s , log(x−α))

where s ∈ N, P ∈ C̄[x], ν ∈ C̄, Q ∈ C̄[[x]][y] with Q(0,y) ̸= 0.
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De�nition. Such a series is called integral at α if ν ≥ 0.

Remark.

If P = 0, s = 1 for all α ∈ C̄∪ {∞}, then L is called Fuchsian.

Hermite reduction for Fuchsian D-�nite functions:

Chen, van Hoeij, Kauers, Koutschan 2017
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D-�nite functions: solution space

Theorem. Let L ∈ C(x)[D]. Then for each α ∈ C̄, L admits n
linearly independent generalized series solutions of the form

exponential part

exp(P((x−α)−
1
s ))

polynomial part

(x−α)ν

series part + logarithmic part

Q((x−α)
1
s , log(x−α))

where s ∈ N, P ∈ C̄[x], ν ∈ C̄, Q ∈ C̄[[x]][y] with Q(0,y) ̸= 0.

De�nition. Such a series is called integral at α if ν ≥ 0.

Example. f = exp(x−2) is integral at 0, but

f ′ =−2x−3 exp(x−2) is not integral at 0.

The valuation ν is decreased by 3, not 1.

This is di�erent from the algebraic and Fuchsian cases.
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D-�nite functions: integral bases

De�nition. An element P ∈ A = C(x)[D]/⟨L⟩ is called integral if for

each α ∈ C̄
P · f is integral

for each series solution f of L.

Theorem. The set O of all integral elements of A forms a free

C[x]-module of rank n.

De�nition. A basis for this module O is called an integral basis.
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D-�nite functions: obstacle

Consider A = C(x)[D]/⟨L⟩ as a left C(x)[D]-module.

Let W = {w1, . . . ,wn} be an C(x)-vector space basis of A. Then

W ′ =
1
e

MW, where e ∈ C[x], M ∈ C[x]n×n

Problem. If W is an integral basis, then e may not be squarefree

for non-Fuchsian D-�nite functions.

Example. Let L = x3D2 +(3x2 +2)D ∈Q(x)[D] with two solutions

y1(x) = 1 and y2(x) = exp(x−2).

Then W = {1,x3D} is an integral basis, but e = x3 is not squarefree.(
1

x3D

)′
=

1
x3

(
0 1
0 −2

)(
1

x3D

)

, 10/19



D-�nite functions: obstacle

Consider A = C(x)[D]/⟨L⟩ as a left C(x)[D]-module.

Let W = {w1, . . . ,wn} be an C(x)-vector space basis of A. Then

W ′ =
1
e

MW, where e ∈ C[x], M ∈ C[x]n×n

Problem. If W is an integral basis, then e may not be squarefree

for non-Fuchsian D-�nite functions.

Example. Let L = x3D2 +(3x2 +2)D ∈Q(x)[D] with two solutions

y1(x) = 1 and y2(x) = exp(x−2).

Then W = {1,x3D} is an integral basis, but e = x3 is not squarefree.(
1

x3D

)′
=

1
x3

(
0 1
0 −2

)(
1

x3D

)

, 10/19



D-�nite functions: obstacle

Consider A = C(x)[D]/⟨L⟩ as a left C(x)[D]-module.

Let W = {w1, . . . ,wn} be an C(x)-vector space basis of A. Then

W ′ =
1
e

MW, where e ∈ C[x], M ∈ C[x]n×n

Problem. If W is an integral basis, then e may not be squarefree

for non-Fuchsian D-�nite functions.

Example. Let L = x3D2 +(3x2 +2)D ∈Q(x)[D] with two solutions

y1(x) = 1 and y2(x) = exp(x−2).

Then W = {1,x3D} is an integral basis, but e = x3 is not squarefree.(
1

x3D

)′
=

1
x3

(
0 1
0 −2

)(
1

x3D

)
, 10/19



D-�nite functions: an example

Example. Let L = x3D2 +(3x2 +2)D ∈Q(x)[D].

W = {ω1,ω2}= {1,x3D} is an integral basis.

Consider

f =
a1ω1 +a2ω2

uvk ,

where

a1 =−2x2 − x4, a2 =−2+3x2 −3x4,

u = 1, v = x, k = 4.

Task. Reduce the multiplicity k at v.

⇝ the goal of Hermite reduction for D-�nite functions
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D-�nite functions: an example

Example. Let L = x3D2 +(3x2 +2)D ∈Q(x)⟨D⟩.

Hermite reduction. Find b1,b2,c1,c2 ∈Q[x] such that

a1ω1 +a2ω2

uvk =
(b1ω1 +b2ω2

vk−1

) ′
+

c1ω1 + c2ω2

uvk−1 .

Task. Reduce the multiplicity k to k−1.
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D-�nite functions: Hermite reduction

Let W = (ω1, . . . ,ωn) be an integral basis of A and let eW ′ = MW.

Problem. Let v be a squarefree polynomial such that vλ | e and

gcd(e/vλ ,v) = 1. Let k > max{1,λ }. Find bi,ci ∈ C[x] to reduce the

multiplicity k:∑n
i=1 aiωi

uvk =

(∑n
i=1 biωi

vk−1

)′
+

∑n
i=1 ciωi

uvk−1

, 13/19



D-�nite functions: Hermite reduction

Let W = (ω1, . . . ,ωn) be an integral basis of A and let eW ′ = MW.

Problem. Let v be a squarefree polynomial such that vλ | e and

gcd(e/vλ ,v) = 1. Let k > max{1,λ }. Find bi,ci ∈ C[x] to reduce the

multiplicity k:∑n
i=1 aiωi

uvk =

(∑n
i=1 biωi

vk−1

)′
+

∑n
i=1 ciωi

uvk−1

Case 1. If λ = 0, then v is coprime with e and

n∑
i=1

aiωi ≡
n∑

i=1

−(k−1)biuv ′
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multiplicity k:∑n
i=1 aiωi

uvk =

(∑n
i=1 biωi

vk−1

)′
+

∑n
i=1 ciωi

uvk−1

Case 2. If λ ≥ 1, then

n∑
i=1

vλ−1aiωi ≡
n∑

i=1

biuvk+λ−1
(

ωi

vk−1

)′
mod vλ
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D-�nite functions: Hermite reduction

Case 2. If λ ≥ 1, then

vλ−1
n∑

i=1

aiωi ≡
n∑

i=1

bi uvk+λ−1
(

ωi

vk−1

)′

︸ ︷︷ ︸
ψi

mod vλ (1)
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h is integral ⇒ bi has no pole at all roots of v for i = 1, . . . ,n⇒ Equation (1) has a solution in C[x]/⟨vλ ⟩

Fuchsian case (Chen, van Hoeij, Kauers, Koutschan 2017)
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Non-Fuchsian case (Chen, Du, Kauers, 2023)
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D-�nite functions: Hermite reduction at in�nity

Example. Let L = x3D2 +(3x2 +2)D ∈Q(x)[D].

After Hermite reduction at �nite places, we get

f =
(

2x2ω1 +4x2ω2

3x3

) ′

+
(−4−3x2)ω1 +(13−9x2)ω2

3x2

{ω1,ω2}= {1,x3D} is also a local integral basis at in�nity.
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4
3
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)

ω1 +

(
−3+

13
3

x−2
)

ω2︸ ︷︷ ︸
h

,

{ω1,ω2}= {1,x3D} is also a local integral basis at in�nity.

Reducing the valuation at in�nity (the degree in x) by Hermite

reduction at in�nity yields that

h = (−xω1 −3xω2)
′−

4
3x2 ω1 −

2
3x2 ω2
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D-�nite functions: symbolic integration

The remainder h of Hermite reduction at �nite places is

f = g ′+h = g ′+

n∑
i=1

ri

d
ωi +

n∑
i=1

si

e
ωi,

where deg(ri)< deg(d) and d is squarefree.

Remarks.

An integral basis may not be a local integral basis at in�nity.

(Aldossari 2020: ∃ an integral basis that is normal at in�nity.)

After performing Hermite reduction at in�nity, we can con�ne

si's into a �nite dimensional vector space over C.

By Gauss elimination, further decompose f as f = g ′+ r s.t.

f is integrable in A ⇔ r = 0.

Creative telecoping: Let f ∈ A = C(t,x)⟨Dt,Dx⟩/I. Find a

nonzero T ∈ C(t)⟨Dt⟩ and g ∈ A such that T(t,Dt)(f ) = Dx(g).

, 16/19
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D-�nite functions: an example (continued)

Example. Let L = x3D2 +(3x2 +2)D ∈Q(x)[D].

After Hermite reduction at �nite places and at in�nity, we get

f =
((

2
3x

− x
)

ω1 +

(
4
3x

−3x
)

ω2

) ′
−

4
3x2 ω1 −

2
3x2 ω2.
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4
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4
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2
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All integrable Hermite remainders are:

U = spanQ

{
−

2
x2 ω1 −

1
x2 ω2,

1
x3 ω2, −

2
x3 ω2

}
.
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After Hermite reduction at �nite places and at in�nity, we get
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)

ω1 +

(
4
3x

−3x
)

ω2

) ′
−

4
3x2 ω1 −

2
3x2 ω2.

All integrable Hermite remainders are:

U = spanQ

{
−

2
x2 ω1 −

1
x2 ω2,

1
x3 ω2, −

2
x3 ω2

}
.

So f is integrable in A:

f =
((

2
3x

− x−
2
3x

)
ω1 +

(
4
3x

−3x−
1
3x

)
ω2

) ′
.
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Comparison with other reduction algorithms
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Summary

Main results.

Hermite reduction for univariate D-�nite functions

new telescoping algorithm for bivariate D-�nite functions

Implementation.

https://github.com/LixinDu/HermiteReduction

Future work.

applications of integral bases to symbolic summation

Thank you!
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