Hermite Reduction for D-finite Functions via Integral Bases

Lixin Du

Institute for Algebra Johannes Kepler University Linz

> Differential Algebra and Related Topics XI June 5-9, 2023, London

Joint work with Shaoshi Chen and Manuel Kauers.

Symbolic integration

Let A be a class of functions. (e.g. $A=\mathbb{Q}(x), \mathbb{Q}(x)(\sqrt{x})$)
Integration Problem. Given $f(x) \in A$, decide whether $\exists g(x) \in A$ s.t.

$$
f(x)=g^{\prime}(x) .
$$

If such a g exists, we say f is integrable in A.

Symbolic integration

Let A be a class of functions. (e.g. $A=\mathbb{Q}(x), \mathbb{Q}(x)(\sqrt{x})$)
Integration Problem. Given $f(x) \in A$, decide whether $\exists g(x) \in A$ s.t.

$$
f(x)=g^{\prime}(x)
$$

If such a g exists, we say f is integrable in A.
Additive Decomposition Problem. Given $f \in A$, compute $g, r \in A$ s.t.

$$
f=g^{\prime}+r
$$

with the following two properties:

- (minimality) r is minimal in some sense,
- (integrability) f is integrable in $A \Leftrightarrow r=0$.

Symbolic integration

Let A be a class of functions. (e.g. $A=\mathbb{Q}(x), \mathbb{Q}(x)(\sqrt{x})$)
Integration Problem. Given $f(x) \in A$, decide whether $\exists g(x) \in A$ s.t.

$$
f(x)=g^{\prime}(x)
$$

If such a g exists, we say f is integrable in A.
Creative Telescoping Problem (Motivation). If $f \in A$ depends on x and t, find $g \in A$ and a nonzero linear differential operator $L\left(t, D_{t}\right)$ s.t.

$$
\underbrace{L\left(t, D_{t}\right)}_{\substack{\downarrow \\ \text { telescoper }}}(f)=D_{x}(\underbrace{g}_{\substack{\downarrow \\ \text { certificate }}})
$$

Reduction-based Creative Telesuping
2010: Bostan, Chen. Chyrak, L_{i}
2013 : Bostan, Chen, Chyzak, Li, Xin
2015: Chen, Huang. Kauers, Li

Integral Bases

Hermite reduction

Rational case.

- Theorem (Ostrogradsky 1845, Hermite 1872). Let $f \in C(x)$. Then

$$
f=g^{\prime}+h \quad \text { with } \quad h=\frac{a}{b},
$$

where $\operatorname{deg}_{x}(a)<\operatorname{deg}_{x}(b)$ and b is squarefree. Moreover

$$
f \text { is integrable in } C(x) \Leftrightarrow a=0 .
$$

Hermite reduction

Algebraic case.

- Theorem (Trager 1984). Let $f \in A=C(x)[y] /\langle m\rangle$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ be an integral basis. Then

$$
f=g^{\prime}+h \quad \text { with } \quad h=\frac{\sum_{i=1}^{n} a_{i} w_{i}}{b},
$$

where $a_{i}, b \in C[x]$ and b is squarefree.

Hermite reduction

Algebraic case.

- Theorem (Trager 1984). Let $f \in A=C(x)[y] /\langle m\rangle$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ be an integral basis. Then

$$
f=g^{\prime}+h \quad \text { with } \quad h=\frac{\sum_{i=1}^{n} a_{i} w_{i}}{b},
$$

where $a_{i}, b \in C[x]$ and b is squarefree.

Hermite reduction

Algebraic case.

- Theorem (Trager 1984). Let $f \in A=C(x)[y] /\langle m\rangle$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ be an integral basis. Then

$$
f=g^{\prime}+h \quad \text { with } \quad h=\frac{\sum_{i=1}^{n} a_{i} w_{i}}{b},
$$

where $a_{i}, b \in C[x]$ and b is squarefree.
Remark.

- How to decide the integrability of f in A ?

Hermite reduction

Algebraic case.

- Theorem (Trager 1984). Let $f \in A=C(x)[y] /\langle m\rangle$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ be an integral basis. Then

$$
f=g^{\prime}+h \quad \text { with } \quad h=\frac{\sum_{i=1}^{n} a_{i} w_{i}}{b},
$$

where $a_{i}, b \in C[x]$ and b is squarefree.
Remark.

- How to decide the integrability of f in A ? (Trager 1984; Chen, Kauers, Koutschan, 2016.)

Integral bases: two cases

Algebraic case

- $A=C(x)[y] /\langle m\rangle$, where $m \in C(x)[y]$ is irreducible
- $f \in A$ is integral iff for all $\alpha \in \bar{C}, f(b)$ is integral for each

Puiseux series solution b of m at $x=\alpha$

- The integral elements of A form a free $C[x]$-module.
- Computation: van Hoeij's algorithm 1994, etc.

Integral bases: two cases

Algebraic case

- $A=C(x)[y] /\langle m\rangle$, where $m \in C(x)[y]$ is irreducible
- $f \in A$ is integral iff for all $\alpha \in \bar{C}, f(b)$ is integral for each

Puiseux series solution b of m at $x=\alpha$

- The integral elements of A form a free $C[x]$-module.
- Computation: van Hoeij's algorithm 1994, etc.

D-finite case

- $A=C(x)[D] /\langle L\rangle, D x=x D+1$, where $L \in C(x)[D]$.
- $f \in A$ is integral iff for all $\alpha \in \bar{C}, f(b)$ is integral for each generalized series solution b of L at $x=\alpha$
- The integral elements of A form a free $C[x]$-module.
- Computation: Kauers and Koutschan's algorithm 2015, Aldossari and van Hoeij's algorithm 2020.

D-finite functions

Definition. A function $f(x)$ is called D-finite over $C[x]$ if

$$
p_{0}(x) f(x)+p_{1}(x) f^{\prime}(x)+\cdots+p_{n}(x) f^{(n)}(x)=0 \quad \text { for } p_{i} \in C[x] .
$$

D-finite functions

Definition. A function $f(x)$ is called D-finite over $C[x]$ if

$$
p_{0}(x) f(x)+p_{1}(x) f^{\prime}(x)+\cdots+p_{n}(x) f^{(n)}(x)=0 \quad \text { for } p_{i} \in C[x] .
$$

Examples.

$$
\frac{1}{x^{2}+2 x}, \quad \frac{1}{\sqrt{x+1}}, \quad \exp (x), \quad \log (x), \quad \cdots
$$

Question. Assume y satisfies $x^{3} y^{\prime \prime}(x)+\left(3 x^{2}+2\right) y(x)=0$. Compute

$$
\int y d x
$$

D-finite functions: solution space

Setting.

- $L=p_{0}(x)+p_{1}(x) D+\cdots+p_{n}(x) D^{n} \in C[x][D]$ with $p_{r} \neq 0$.
- $A=C(x)[D] /\langle L\rangle, D x=x D+1$.
- $1 \in A$ represents a solution y of L. Indeed, $L \cdot 1=L=0$ in A.

D-finite functions: solution space

Setting.

- $L=p_{0}(x)+p_{1}(x) D+\cdots+p_{n}(x) D^{n} \in C[x][D]$ with $p_{r} \neq 0$.
- $A=C(x)[D] /\langle L\rangle, D x=x D+1$.
- $1 \in A$ represents a solution y of L. Indeed, $L \cdot 1=L=0$ in A.
- Operator action: for any function $f(x)$

$$
L \cdot f=p_{0}(x) f(x)+p_{1}(x) f^{\prime}(x)+\cdots+p_{n}(x) f^{(n)}(x)
$$

D-finite functions: solution space

Setting.

- $L=p_{0}(x)+p_{1}(x) D+\cdots+p_{n}(x) D^{n} \in C[x][D]$ with $p_{r} \neq 0$.
- $A=C(x)[D] /\langle L\rangle, D x=x D+1$.
- $1 \in A$ represents a solution y of L. Indeed, $L \cdot 1=L=0$ in A.
- Operator action: for any function $f(x)$

$$
L \cdot f=p_{0}(x) f(x)+p_{1}(x) f^{\prime}(x)+\cdots+p_{n}(x) f^{(n)}(x)
$$

- Solution space:

$$
L \cdot f=0
$$

D-finite functions: solution space

Theorem. Let $L \in C(x)[D]$. Then for each $\alpha \in \bar{C}, L$ admits n linearly independent generalized series solutions of the form

$$
\exp \left(P\left((x-\alpha)^{-\frac{1}{s}}\right)\right) \quad(x-\alpha)^{v} \quad Q\left((x-\alpha)^{\frac{1}{s}}, \log (x-\alpha)\right)
$$

where $s \in \mathbb{N}, P \in \bar{C}[x], v \in \bar{C}, Q \in \bar{C}[[x]][y]$ with $Q(0, y) \neq 0$.

D-finite functions: solution space

Theorem. Let $L \in C(x)[D]$. Then for each $\alpha \in \bar{C}, L$ admits n linearly independent generalized series solutions of the form

where $s \in \mathbb{N}, P \in \bar{C}[x], v \in \bar{C}, Q \in \bar{C}[[x]][y]$ with $Q(0, y) \neq 0$.

D-finite functions: solution space

Theorem. Let $L \in C(x)[D]$. Then for each $\alpha \in \bar{C}, L$ admits n linearly independent generalized series solutions of the form

where $s \in \mathbb{N}, P \in \bar{C}[x], v \in \bar{C}, Q \in \bar{C}[[x]][y]$ with $Q(0, y) \neq 0$.

D-finite functions: solution space

Theorem. Let $L \in C(x)[D]$. Then for each $\alpha \in \bar{C}, L$ admits n linearly independent generalized series solutions of the form

where $s \in \mathbb{N}, P \in \bar{C}[x], v \in \bar{C}, Q \in \bar{C}[[x]][y]$ with $Q(0, y) \neq 0$.

D-finite functions: solution space

Theorem. Let $L \in C(x)[D]$. Then for each $\alpha \in \bar{C}, L$ admits n linearly independent generalized series solutions of the form

where $s \in \mathbb{N}, P \in \bar{C}[x], v \in \bar{C}, Q \in \bar{C}[[x]][y]$ with $Q(0, y) \neq 0$.
Definition. Such a series is called integral at α if $v \geq 0$.

D-finite functions: solution space

Theorem. Let $L \in C(x)[D]$. Then for each $\alpha \in \bar{C}, L$ admits n linearly independent generalized series solutions of the form

where $s \in \mathbb{N}, P \in \bar{C}[x], v \in \bar{C}, Q \in \bar{C}[[x]][y]$ with $Q(0, y) \neq 0$.
Definition. Such a series is called integral at α if $v \geq 0$.
Remark.

- If $P=0, s=1$ for all $\alpha \in \bar{C} \cup\{\infty\}$, then L is called Fuchsian.

D-finite functions: solution space

Theorem. Let $L \in C(x)[D]$. Then for each $\alpha \in \bar{C}, L$ admits n linearly independent generalized series solutions of the form

where $s \in \mathbb{N}, P \in \bar{C}[x], v \in \bar{C}, Q \in \bar{C}[[x]][y]$ with $Q(0, y) \neq 0$.
Definition. Such a series is called integral at α if $v \geq 0$.
Remark.

- If $P=0, s=1$ for all $\alpha \in \bar{C} \cup\{\infty\}$, then L is called Fuchsian.
- Hermite reduction for Fuchsian D-finite functions:

Chen, van Hoeij, Kauers, Koutschan 2017

D-finite functions: solution space

Theorem. Let $L \in C(x)[D]$. Then for each $\alpha \in \bar{C}, L$ admits n linearly independent generalized series solutions of the form

where $s \in \mathbb{N}, P \in \bar{C}[x], v \in \bar{C}, Q \in \bar{C}[[x]][y]$ with $Q(0, y) \neq 0$.
Definition. Such a series is called integral at α if $v \geq 0$.
Example. $f=\exp \left(x^{-2}\right)$ is integral at 0 , but

$$
f^{\prime}=-2 x^{-3} \exp \left(x^{-2}\right) \text { is not integral at } 0 .
$$

D-finite functions: solution space

Theorem. Let $L \in C(x)[D]$. Then for each $\alpha \in \bar{C}, L$ admits n linearly independent generalized series solutions of the form

where $s \in \mathbb{N}, P \in \bar{C}[x], v \in \bar{C}, Q \in \bar{C}[[x]][y]$ with $Q(0, y) \neq 0$.
Definition. Such a series is called integral at α if $v \geq 0$.
Example. $f=\exp \left(x^{-2}\right)$ is integral at 0 , but

$$
\begin{aligned}
& f^{\prime}=-2 x^{-3} \exp \left(x^{-2}\right) \text { is not integral at } 0 . \\
& \text { The valuation } v \text { is decreased by } 3 \text {, not } 1 \text {. }
\end{aligned}
$$

This is different from the algebraic and Fuchsian cases.

D-finite functions: integral bases

Definition. An element $P \in A=C(x)[D] /\langle L\rangle$ is called integral if for each $\alpha \in \bar{C}$
$P \cdot f \quad$ is integral
for each series solution f of L.

D-finite functions: integral bases

Definition. An element $P \in A=C(x)[D] /\langle L\rangle$ is called integral if for each $\alpha \in \bar{C}$

$$
P \cdot f \quad \text { is integral }
$$

for each series solution f of L.

Theorem. The set \mathcal{O} of all integral elements of A forms a free $C[x]$-module of rank n.

D-finite functions: integral bases

Definition. An element $P \in A=C(x)[D] /\langle L\rangle$ is called integral if for each $\alpha \in \bar{C}$

$$
P \cdot f \quad \text { is integral }
$$

for each series solution f of L.

Theorem. The set \mathcal{O} of all integral elements of A forms a free $C[x]$-module of rank n.

Definition. A basis for this module \mathcal{O} is called an integral basis.

D-finite functions: obstacle

Consider $A=C(x)[D] /\langle L\rangle$ as a left $C(x)[D]$-module.
Let $W=\left\{w_{1}, \ldots, w_{n}\right\}$ be an $C(x)$-vector space basis of A. Then

$$
W^{\prime}=\frac{1}{e} M W, \quad \text { where } \quad e \in C[x], M \in C[x]^{n \times n}
$$

D-finite functions: obstacle

Consider $A=C(x)[D] /\langle L\rangle$ as a left $C(x)[D]$-module.
Let $W=\left\{w_{1}, \ldots, w_{n}\right\}$ be an $C(x)$-vector space basis of A. Then

$$
W^{\prime}=\frac{1}{e} M W, \quad \text { where } \quad e \in C[x], M \in C[x]^{n \times n}
$$

Problem. If W is an integral basis, then e may not be squarefree for non-Fuchsian D-finite functions.

D-finite functions: obstacle

Consider $A=C(x)[D] /\langle L\rangle$ as a left $C(x)[D]$-module.
Let $W=\left\{w_{1}, \ldots, w_{n}\right\}$ be an $C(x)$-vector space basis of A. Then

$$
W^{\prime}=\frac{1}{e} M W, \quad \text { where } \quad e \in C[x], M \in C[x]^{n \times n}
$$

Problem. If W is an integral basis, then e may not be squarefree for non-Fuchsian D-finite functions.

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)[D]$ with two solutions

$$
y_{1}(x)=1 \quad \text { and } \quad y_{2}(x)=\exp \left(x^{-2}\right)
$$

Then $W=\left\{1, x^{3} D\right\}$ is an integral basis, but $e=x^{3}$ is not squarefree.

$$
\binom{1}{x^{3} D}^{\prime}=\frac{1}{x^{3}}\left(\begin{array}{cc}
0 & 1 \\
0 & -2
\end{array}\right)\binom{1}{x^{3} D}
$$

D-finite functions: an example

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)[D]$.

- $W=\left\{\omega_{1}, \omega_{2}\right\}=\left\{1, x^{3} D\right\}$ is an integral basis.

D-finite functions: an example

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)[D]$.

- $W=\left\{\omega_{1}, \omega_{2}\right\}=\left\{1, x^{3} D\right\}$ is an integral basis.
- Consider

$$
f=\frac{a_{1} \omega_{1}+a_{2} \omega_{2}}{u v^{k}}
$$

where

$$
\begin{aligned}
& a_{1}=-2 x^{2}-x^{4}, \quad a_{2}=-2+3 x^{2}-3 x^{4} \\
& u=1, \quad v=x, \quad k=4 .
\end{aligned}
$$

D-finite functions: an example

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)[D]$.

- $W=\left\{\omega_{1}, \omega_{2}\right\}=\left\{1, x^{3} D\right\}$ is an integral basis.
- Consider

$$
f=\frac{a_{1} \omega_{1}+a_{2} \omega_{2}}{u v^{k}}
$$

where

$$
\begin{aligned}
& a_{1}=-2 x^{2}-x^{4}, \quad a_{2}=-2+3 x^{2}-3 x^{4} \\
& u=1, \quad v=x, \quad k=4 .
\end{aligned}
$$

- Task. Reduce the multiplicity k at v.
$\rightsquigarrow \quad$ the goal of Hermite reduction for D-finite functions

D-finite functions: an example

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)\langle D\rangle$.

- Hermite reduction. Find $b_{1}, b_{2}, c_{1}, c_{2} \in \mathbb{Q}[x]$ such that

$$
\frac{a_{1} \omega_{1}+a_{2} \omega_{2}}{u v^{k}}=\left(\frac{b_{1} \omega_{1}+b_{2} \omega_{2}}{v^{k-1}}\right)^{\prime}+\frac{c_{1} \omega_{1}+c_{2} \omega_{2}}{u v^{k-1}} .
$$

Task. Reduce the multiplicity k to $k-1$.

D-finite functions: an example

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)\langle D\rangle$.

- Hermite reduction. Find $b_{1}, b_{2}, c_{1}, c_{2} \in \mathbb{Q}[x]$ such that

$$
\frac{a_{1} \omega_{1}+a_{2} \omega_{2}}{u v^{k}}=\left(\frac{b_{1} \omega_{1}+b_{2} \omega_{2}}{v^{k-1}}\right)^{\prime}+\frac{c_{1} \omega_{1}+c_{2} \omega_{2}}{u v^{k-1}} .
$$

- Multiplying by $u v^{k+2}$ and module v^{3} yield that

$$
v^{2}\left(a_{1} \omega_{1}+a_{2} \omega_{2}\right) \equiv b_{1} u v^{k+2}\left(\frac{\omega_{1}}{v^{k-1}}\right)^{\prime}+b_{2} u v^{k+2}\left(\frac{\omega_{2}}{v^{k-1}}\right)^{\prime} \bmod v^{3}
$$

D-finite functions: an example

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)\langle D\rangle$.

- Hermite reduction. Find $b_{1}, b_{2}, c_{1}, c_{2} \in \mathbb{Q}[x]$ such that

$$
\frac{a_{1} \omega_{1}+a_{2} \omega_{2}}{u v^{k}}=\left(\frac{b_{1} \omega_{1}+b_{2} \omega_{2}}{v^{k-1}}\right)^{\prime}+\frac{c_{1} \omega_{1}+c_{2} \omega_{2}}{u v^{k-1}} .
$$

- Multiplying by $u v^{k+2}$ and module v^{3} yield that

$$
v^{2}\left(a_{1} \omega_{1}+a_{2} \omega_{2}\right) \equiv b_{1} u v^{k+2}\left(\frac{\omega_{1}}{v^{k-1}}\right)^{\prime}+b_{2} u v^{k+2}\left(\frac{\omega_{2}}{v^{k-1}}\right)^{\prime} \bmod v^{3}
$$

where

$$
\binom{\omega_{1}^{\prime}}{\omega_{2}^{\prime}}=\frac{1}{x^{3}}\left(\begin{array}{cc}
0 & 1 \\
0 & -2
\end{array}\right)\binom{\omega_{1}}{\omega_{2}}
$$

D-finite functions: an example

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)\langle D\rangle$.

- Hermite reduction. Find $b_{1}, b_{2}, c_{1}, c_{2} \in \mathbb{Q}[x]$ such that

$$
\frac{a_{1} \omega_{1}+a_{2} \omega_{2}}{u v^{k}}=\left(\frac{b_{1} \omega_{1}+b_{2} \omega_{2}}{v^{k-1}}\right)^{\prime}+\frac{c_{1} \omega_{1}+c_{2} \omega_{2}}{u v^{k-1}} .
$$

- Multiplying by $u v^{k+2}$ and module v^{3} yield that

$$
v^{2}\left(a_{1} \omega_{1}+a_{2} \omega_{2}\right) \equiv b_{1}\left(-3 x^{2} \omega_{1}+\omega_{2}\right)-\left(3 x^{2}+2\right) b_{2} \omega_{2} \bmod v^{3} .
$$

D-finite functions: an example

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)\langle D\rangle$.

- Hermite reduction. Find $b_{1}, b_{2}, c_{1}, c_{2} \in \mathbb{Q}[x]$ such that

$$
\frac{a_{1} \omega_{1}+a_{2} \omega_{2}}{u v^{k}}=\left(\frac{b_{1} \omega_{1}+b_{2} \omega_{2}}{v^{k-1}}\right)^{\prime}+\frac{c_{1} \omega_{1}+c_{2} \omega_{2}}{u v^{k-1}} .
$$

- Multiplying by $u v^{k+2}$ and module v^{3} yield that

$$
v^{2}\left(a_{1} \omega_{1}+a_{2} \omega_{2}\right) \equiv b_{1}\left(-3 x^{2} \omega_{1}+\omega_{2}\right)-\left(3 x^{2}+2\right) b_{2} \omega_{2} \bmod v^{3} .
$$

- Equating the coefficients of ω_{i}, we have

$$
\binom{a_{1} v^{2}}{a_{2} v^{2}}=\left(\begin{array}{cc}
-3 x^{2} & 0 \\
1 & -3 x^{2}-2
\end{array}\right)\binom{b_{1}}{b_{2}} \bmod v^{3}
$$

D-finite functions: an example

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)\langle D\rangle$.

- Hermite reduction. Find $b_{1}, b_{2}, c_{1}, c_{2} \in \mathbb{Q}[x]$ such that

$$
\frac{a_{1} \omega_{1}+a_{2} \omega_{2}}{u v^{k}}=\left(\frac{b_{1} \omega_{1}+b_{2} \omega_{2}}{v^{k-1}}\right)^{\prime}+\frac{c_{1} \omega_{1}+c_{2} \omega_{2}}{u v^{k-1}} .
$$

- Multiplying by $u v^{k+2}$ and module v^{3} yield that

$$
v^{2}\left(a_{1} \omega_{1}+a_{2} \omega_{2}\right) \equiv b_{1}\left(-3 x^{2} \omega_{1}+\omega_{2}\right)-\left(3 x^{2}+2\right) b_{2} \omega_{2} \bmod v^{3} .
$$

- Equating the coefficients of ω_{i}, we have

$$
\begin{gathered}
\binom{a_{1} v^{2}}{a_{2} v^{2}}=\left(\begin{array}{cc}
-3 x^{2} & 0 \\
1 & -3 x^{2}-2
\end{array}\right)\binom{b_{1}}{b_{2}} \bmod v^{3} \\
\text { not invertible over } \mathbb{Q}[x] /\left\langle v^{3}\right\rangle
\end{gathered}
$$

D-finite functions: an example

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)\langle D\rangle$.

- Hermite reduction. Find $b_{1}, b_{2}, c_{1}, c_{2} \in \mathbb{Q}[x]$ such that

$$
\frac{a_{1} \omega_{1}+a_{2} \omega_{2}}{u v^{k}}=\left(\frac{b_{1} \omega_{1}+b_{2} \omega_{2}}{v^{k-1}}\right)^{\prime}+\frac{c_{1} \omega_{1}+c_{2} \omega_{2}}{u v^{k-1}} .
$$

- Multiplying by $u v^{k+2}$ and module v^{3} yield that

$$
v^{2}\left(a_{1} \omega_{1}+a_{2} \omega_{2}\right) \equiv b_{1}\left(-3 x^{2} \omega_{1}+\omega_{2}\right)-\left(3 x^{2}+2\right) b_{2} \omega_{2} \bmod v^{3} .
$$

- Equating the coefficients of ω_{i}, we have

$$
\begin{gathered}
\binom{a_{1} v^{2}}{a_{2} v^{2}}=\left(\begin{array}{cc}
-3 x^{2} & 0 \\
1 & -3 x^{2}-2
\end{array}\right)\binom{b_{1}}{b_{2}} \bmod v^{3} \\
\text { not invertible over } \mathbb{Q}[x] /\left\langle v^{3}\right\rangle \\
\text { But the linear system has a solution. }
\end{gathered}
$$

D-finite functions: an example

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)\langle D\rangle$.

- Hermite reduction. Find $b_{1}, b_{2}, c_{1}, c_{2} \in \mathbb{Q}[x]$ such that

$$
\frac{a_{1} \omega_{1}+a_{2} \omega_{2}}{u v^{k}}=\left(\frac{b_{1} \omega_{1}+b_{2} \omega_{2}}{v^{k-1}}\right)^{\prime}+\frac{c_{1} \omega_{1}+c_{2} \omega_{2}}{u v^{k-1}} .
$$

- Multiplying by $u v^{k+2}$ and module v^{3} yield that

$$
v^{2}\left(a_{1} \omega_{1}+a_{2} \omega_{2}\right) \equiv b_{1}\left(-3 x^{2} \omega_{1}+\omega_{2}\right)-\left(3 x^{2}+2\right) b_{2} \omega_{2} \bmod v^{3} .
$$

- So $b_{1}=\frac{2}{3} x^{2}, b_{2}=\frac{4}{3} x^{2}$.

D-finite functions: an example

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)\langle D\rangle$.

- Hermite reduction. Find $b_{1}, b_{2}, c_{1}, c_{2} \in \mathbb{Q}[x]$ such that

$$
\frac{a_{1} \omega_{1}+a_{2} \omega_{2}}{u v^{k}}=\left(\frac{b_{1} \omega_{1}+b_{2} \omega_{2}}{v^{k-1}}\right)^{\prime}+\frac{c_{1} \omega_{1}+c_{2} \omega_{2}}{u v^{k-1}} .
$$

- Multiplying by $u v^{k+2}$ and module v^{3} yield that

$$
v^{2}\left(a_{1} \omega_{1}+a_{2} \omega_{2}\right) \equiv b_{1}\left(-3 x^{2} \omega_{1}+\omega_{2}\right)-\left(3 x^{2}+2\right) b_{2} \omega_{2} \bmod v^{3} .
$$

- So $b_{1}=\frac{2}{3} x^{2}, b_{2}=\frac{4}{3} x^{2}$.
- Consequently,

$$
f=\left(\frac{2 x^{2} \omega_{1}+4 x^{2} \omega_{2}}{3 x^{3}}\right)^{\prime}+\frac{\left(-4-3 x^{2}\right) \omega_{1}+\left(13-9 x^{2}\right) \omega_{2}}{3 x^{2}}
$$

D-finite functions: Hermite reduction

Let $W=\left(\omega_{1}, \ldots, \omega_{n}\right)$ be an integral basis of A and let $e W^{\prime}=M W$.
Problem. Let v be a squarefree polynomial such that $v^{\lambda} \mid e$ and $\operatorname{gcd}\left(e / v^{\lambda}, v\right)=1$. Let $k>\max \{1, \lambda\}$. Find $b_{i}, c_{i} \in C[x]$ to reduce the multiplicity k :

$$
\frac{\sum_{i=1}^{n} a_{i} \omega_{i}}{u v^{k}}=\left(\frac{\sum_{i=1}^{n} b_{i} \omega_{i}}{v^{k-1}}\right)^{\prime}+\frac{\sum_{i=1}^{n} c_{i} \omega_{i}}{u v^{k-1}}
$$

D-finite functions: Hermite reduction

Let $W=\left(\omega_{1}, \ldots, \omega_{n}\right)$ be an integral basis of A and let $e W^{\prime}=M W$.
Problem. Let v be a squarefree polynomial such that $v^{\lambda} \mid e$ and $\operatorname{gcd}\left(e / v^{\lambda}, v\right)=1$. Let $k>\max \{1, \lambda\}$. Find $b_{i}, c_{i} \in C[x]$ to reduce the multiplicity k :

$$
\frac{\sum_{i=1}^{n} a_{i} \omega_{i}}{u v^{k}}=\left(\frac{\sum_{i=1}^{n} b_{i} \omega_{i}}{v^{k-1}}\right)^{\prime}+\frac{\sum_{i=1}^{n} c_{i} \omega_{i}}{u v^{k-1}}
$$

Case 1. If $\lambda=0$, then v is coprime with e and

$$
\sum_{i=1}^{n} a_{i} \omega_{i} \equiv \sum_{i=1}^{n}-(k-1) b_{i} u v^{\prime} \omega_{i} \quad \bmod v
$$

D-finite functions: Hermite reduction

Let $W=\left(\omega_{1}, \ldots, \omega_{n}\right)$ be an integral basis of A and let $e W^{\prime}=M W$.
Problem. Let v be a squarefree polynomial such that $v^{\lambda} \mid e$ and $\operatorname{gcd}\left(e / v^{\lambda}, v\right)=1$. Let $k>\max \{1, \lambda\}$. Find $b_{i}, c_{i} \in C[x]$ to reduce the multiplicity k :

$$
\frac{\sum_{i=1}^{n} a_{i} \omega_{i}}{u v^{k}}=\left(\frac{\sum_{i=1}^{n} b_{i} \omega_{i}}{v^{k-1}}\right)^{\prime}+\frac{\sum_{i=1}^{n} c_{i} \omega_{i}}{u v^{k-1}}
$$

Case 1. If $\lambda=0$, then v is coprime with e and

$$
b_{i} \equiv-(k-1)^{-1}\left(u v^{\prime}\right)^{-1} a_{i} \bmod v
$$

D-finite functions: Hermite reduction

Let $W=\left(\omega_{1}, \ldots, \omega_{n}\right)$ be an integral basis of A and let $e W^{\prime}=M W$.
Problem. Let v be a squarefree polynomial such that $v^{\lambda} \mid e$ and $\operatorname{gcd}\left(e / v^{\lambda}, v\right)=1$. Let $k>\max \{1, \lambda\}$. Find $b_{i}, c_{i} \in C[x]$ to reduce the multiplicity k :

$$
\frac{\sum_{i=1}^{n} a_{i} \omega_{i}}{u v^{k}}=\left(\frac{\sum_{i=1}^{n} b_{i} \omega_{i}}{v^{k-1}}\right)^{\prime}+\frac{\sum_{i=1}^{n} c_{i} \omega_{i}}{u v^{k-1}}
$$

Case 2. If $\lambda \geq 1$, then

$$
\sum_{i=1}^{n} v^{\lambda-1} a_{i} \omega_{i} \equiv \sum_{i=1}^{n} b_{i} u v^{k+\lambda-1}\left(\frac{\omega_{i}}{v^{k-1}}\right)^{\prime} \bmod v^{\lambda}
$$

D-finite functions: Hermite reduction

Case 2. If $\lambda \geq 1$, then

$$
\begin{equation*}
v^{\lambda-1} \sum_{i=1}^{n} a_{i} \omega_{i} \equiv \sum_{i=1}^{n} b_{i} \underbrace{u v^{k+\lambda-1}\left(\frac{\omega_{i}}{v^{k-1}}\right)^{\prime}}_{\psi_{i}} \bmod v^{\lambda} \tag{1}
\end{equation*}
$$

D-finite functions: Hermite reduction

Case 2. If $\lambda \geq 1$, then

$$
\begin{equation*}
v^{\lambda-1} \underbrace{a_{i} \omega_{i}}_{\substack{\sum_{i=1}^{n} \\ \text { integral }}} \equiv \sum_{i=1}^{n} b_{i} \underbrace{u v^{k+\lambda-1}\left(\frac{\omega_{i}}{v^{k-1}}\right)^{\prime}}_{\psi_{i}} \bmod v^{\lambda} \tag{1}
\end{equation*}
$$

D-finite functions: Hermite reduction

Case 2. If $\lambda \geq 1$, then

$$
\begin{equation*}
v^{\lambda-1} \underbrace{\sum_{i} \omega_{i}}_{\substack{\sum_{i=1}^{n} \\ \text { integral }}} \equiv \sum_{i=1}^{n} b_{i} \underbrace{\bmod v^{\lambda} .}_{v^{u} v^{k+\lambda-1}\left(\frac{\omega_{i}}{v^{k-1}}\right)^{\prime}} \tag{1}
\end{equation*}
$$

Lemma. $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ is linearly independent over $C(x)$.
So (1) has a solution in $C(x)^{n}$.

D-finite functions: Hermite reduction

Case 2. If $\lambda \geq 1$, then

$$
\begin{equation*}
v^{\lambda-1} \underbrace{\sum_{i} \omega_{i}}_{\substack{\sum_{i=1}^{n} \\ \text { integral }}} \equiv \sum_{i=1}^{n} b_{i} \underbrace{\bmod v^{\lambda} .}_{\psi^{u} v^{k+\lambda-1}\left(\frac{\omega_{i}}{v^{k-1}}\right)^{\prime}} \tag{1}
\end{equation*}
$$

Lemma. $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ is linearly independent over $C(x)$.
So (1) has a solution in $C(x)^{n}$.
Existence of b_{i}. Let $h=\frac{1}{v^{\lambda-1}} \sum_{i=1}^{n} b_{i} \psi_{i}$ with $b_{i} \in C(x)$. If $\lambda=1$, then $\psi_{1}, \ldots, \psi_{n}$ is a local integral basis at all roots of v. So
h is integral $\Rightarrow b_{i}$ has no pole at all roots of v for $i=1, \ldots, n$

D-finite functions: Hermite reduction

Case 2. If $\lambda \geq 1$, then

$$
\begin{equation*}
v^{\lambda-1} \underbrace{\sum_{i} \omega_{i}}_{\substack{\sum_{i=1}^{n} \\ \text { integral }}} \equiv \sum_{i=1}^{n} b_{i} \underbrace{\bmod v^{\lambda} .}_{\psi^{u} v^{k+\lambda-1}\left(\frac{\omega_{i}}{v^{k-1}}\right)^{\prime}} \tag{1}
\end{equation*}
$$

Lemma. $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ is linearly independent over $C(x)$.
So (1) has a solution in $C(x)^{n}$.
Existence of b_{i}. Let $h=\frac{1}{v^{\lambda-1}} \sum_{i=1}^{n} b_{i} \psi_{i}$ with $b_{i} \in C(x)$. If $\lambda=1$, then $\psi_{1}, \ldots, \psi_{n}$ is a local integral basis at all roots of v. So
h is integral $\Rightarrow b_{i}$ has no pole at all roots of v for $i=1, \ldots, n$
\Rightarrow Equation (1) has a solution in $C[x] /\left\langle v^{\lambda}\right\rangle$

D-finite functions: Hermite reduction

Case 2. If $\lambda \geq 1$, then

Lemma. $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ is linearly independent over $C(x)$. So (1) has a solution in $C(x)^{n}$.
Existence of b_{i}. Let $h=\frac{1}{v^{\lambda-1}} \sum_{i=1}^{n} b_{i} \psi_{i}$ with $b_{i} \in C(x)$. If $\lambda=1$, then $\psi_{1}, \ldots, \psi_{n}$ is a local integral basis at all roots of v. So
h is integral $\Rightarrow b_{i}$ has no pole at all roots of v for $i=1, \ldots, n$ \Rightarrow Equation (1) has a solution in $C[x] /\left\langle v^{\lambda}\right\rangle$

Fuchsian case (Chen, van Hoeij, Kauers, Koutschan 2017)

D-finite functions: Hermite reduction

Case 2. If $\lambda \geq 1$, then

$$
\begin{equation*}
v^{\lambda-1} \underbrace{\sum_{i} \omega_{i}}_{\substack{\sum_{i=1}^{n} \\ \text { integral }}} \equiv \sum_{i=1}^{n} b_{i} \underbrace{u v^{k+\lambda-1}\left(\frac{\omega_{i}}{v^{k-1}}\right)^{\prime}}_{\psi_{i}} \bmod v^{\lambda} \tag{1}
\end{equation*}
$$

Lemma. $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ is linearly independent over $C(x)$.
So (1) has a solution in $C(x)^{n}$.
Existence of b_{i}. Let $h=\frac{1}{v^{\lambda-1}} \sum_{i=1}^{n} b_{i} \psi_{i}$ with $b_{i} \in C(x)$. If $\lambda>1$, then $\psi_{1}, \ldots, \psi_{n}$ is a local integral basis at each root of w. So
h is integral $\Rightarrow b_{i}$ has no pole at all roots of v for $i=1, \ldots, n$
\Rightarrow Equation (1) has a solution in $C[x] /\left\langle v^{\lambda}\right\rangle$

D-finite functions: Hermite reduction

Case 2. If $\lambda \geq 1$, then

$$
\begin{equation*}
v^{\lambda-1} \underbrace{a_{i} \omega_{i}}_{\substack{\sum_{i=1}^{n} \\ \text { integral }}} \equiv \sum_{i=1}^{n} b_{i} \underbrace{u v^{k+\lambda-1}\left(\frac{\omega_{i}}{v^{k-1}}\right)^{\prime}}_{\psi_{i}} \bmod v^{\lambda} \tag{1}
\end{equation*}
$$

Lemma. $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ is linearly independent over $C(x)$.
So (1) has a solution in $C(x)^{n}$.
Existence of b_{i}. Let $h=\frac{1}{v^{\lambda-1}} \sum_{i=1}^{n} b_{i} \psi_{i}$ with $b_{i} \in C(x)$. Then
h is integral $\Rightarrow b_{i}$ has no pole at all roots of v for $i=1, \ldots, n$
\Rightarrow Equation (1) has a solution in $C[x] /\left\langle v^{\lambda}\right\rangle$

D-finite functions: Hermite reduction

Case 2. If $\lambda \geq 1$, then

$$
\begin{equation*}
v^{\lambda-1} \underbrace{}_{\substack{\sum_{i=1}^{i_{n}} a_{i} \\ \sum_{i} \omega_{i}}} \equiv \sum_{i=1}^{n} b_{i} \underbrace{\bmod v^{\lambda} .}_{\psi^{u} v^{k+\lambda-1}\left(\frac{\omega_{i}}{v^{k-1}}\right)^{\prime}} \tag{1}
\end{equation*}
$$

Lemma. $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ is linearly independent over $C(x)$.
So (1) has a solution in $C(x)^{n}$.
Existence of b_{i}. Let $h=\frac{1}{v^{\lambda-1}} \sum_{i=1}^{n} b_{i} \psi_{i}$ with $b_{i} \in C(x)$. Then
h is integral $\Rightarrow b_{i}$ has no pole at all roots of v for $i=1, \ldots, n$
\Rightarrow Equation (1) has a solution in $C[x] /\left\langle v^{\lambda}\right\rangle$

Non-Fuchsian case (Chen, Du, Kauers, 2023)

D-finite functions: Hermite reduction at infinity

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)[D]$.

- After Hermite reduction at finite places, we get

$$
f=\left(\frac{2 x^{2} \omega_{1}+4 x^{2} \omega_{2}}{3 x^{3}}\right)^{\prime}+\frac{\left(-4-3 x^{2}\right) \omega_{1}+\left(13-9 x^{2}\right) \omega_{2}}{3 x^{2}}
$$

D-finite functions: Hermite reduction at infinity

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)[D]$.

- After Hermite reduction at finite places, we get

$$
f=\left(\frac{2 \omega_{1}+4 \omega_{2}}{3 x}\right)^{\prime}+\underbrace{\left(-1-\frac{4}{3} x^{-2}\right) \omega_{1}+\left(-3+\frac{13}{3} x^{-2}\right) \omega_{2}}_{h},
$$

- $\left\{\omega_{1}, \omega_{2}\right\}=\left\{1, x^{3} D\right\}$ is also a local integral basis at infinity.

D-finite functions: Hermite reduction at infinity

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)[D]$.

- After Hermite reduction at finite places, we get

$$
f=\left(\frac{2 \omega_{1}+4 \omega_{2}}{3 x}\right)^{\prime}+\underbrace{\left(-1-\frac{4}{3} x^{-2}\right) \omega_{1}+\left(-3+\frac{13}{3} x^{-2}\right) \omega_{2}}_{h},
$$

- $\left\{\omega_{1}, \omega_{2}\right\}=\left\{1, x^{3} D\right\}$ is also a local integral basis at infinity.
- Reducing the valuation at infinity (the degree in x) by Hermite reduction at infinity yields that

$$
h=\left(-x \omega_{1}-3 x \omega_{2}\right)^{\prime}-\frac{4}{3 x^{2}} \omega_{1}-\frac{2}{3 x^{2}} \omega_{2}
$$

D-finite functions: symbolic integration

The remainder h of Hermite reduction at finite places is

$$
f=g^{\prime}+h=g^{\prime}+\sum_{i=1}^{n} \frac{r_{i}}{d} \omega_{i}+\sum_{i=1}^{n} \frac{s_{i}}{e} \omega_{i}
$$

where $\operatorname{deg}\left(r_{i}\right)<\operatorname{deg}(d)$ and d is squarefree.
Remarks.

- An integral basis may not be a local integral basis at infinity. (Aldossari 2020: \exists an integral basis that is normal at infinity.)

D-finite functions: symbolic integration

The remainder h of Hermite reduction at finite places is

$$
f=g^{\prime}+h=g^{\prime}+\sum_{i=1}^{n} \frac{r_{i}}{d} \omega_{i}+\sum_{i=1}^{n} \frac{s_{i}}{e} \omega_{i}
$$

where $\operatorname{deg}\left(r_{i}\right)<\operatorname{deg}(d)$ and d is squarefree.
Remarks.

- An integral basis may not be a local integral basis at infinity. (Aldossari 2020: \exists an integral basis that is normal at infinity.)
- After performing Hermite reduction at infinity, we can confine s_{i} 's into a finite dimensional vector space over C.

D-finite functions: symbolic integration

The remainder h of Hermite reduction at finite places is

$$
f=g^{\prime}+h=g^{\prime}+\sum_{i=1}^{n} \frac{r_{i}}{d} \omega_{i}+\sum_{i=1}^{n} \frac{s_{i}}{e} \omega_{i}
$$

where $\operatorname{deg}\left(r_{i}\right)<\operatorname{deg}(d)$ and d is squarefree.
Remarks.

- An integral basis may not be a local integral basis at infinity. (Aldossari 2020: \exists an integral basis that is normal at infinity.)
- After performing Hermite reduction at infinity, we can confine s_{i} 's into a finite dimensional vector space over C.
- By Gauss elimination, further decompose f as $f=g^{\prime}+r$ s.t.
f is integrable in $A \Leftrightarrow r=0$.

D-finite functions: symbolic integration

The remainder h of Hermite reduction at finite places is

$$
f=g^{\prime}+h=g^{\prime}+\sum_{i=1}^{n} \frac{r_{i}}{d} \omega_{i}+\sum_{i=1}^{n} \frac{s_{i}}{e} \omega_{i}
$$

where $\operatorname{deg}\left(r_{i}\right)<\operatorname{deg}(d)$ and d is squarefree.
Remarks.

- An integral basis may not be a local integral basis at infinity. (Aldossari 2020: \exists an integral basis that is normal at infinity.)
- After performing Hermite reduction at infinity, we can confine s_{i} 's into a finite dimensional vector space over C.
- By Gauss elimination, further decompose f as $f=g^{\prime}+r$ s.t. f is integrable in $A \Leftrightarrow r=0$.
- Creative telecoping: Let $f \in A=C(t, x)\left\langle D_{t}, D_{x}\right\rangle / I$. Find a nonzero $T \in C(t)\left\langle D_{t}\right\rangle$ and $g \in A$ such that $T\left(t, D_{t}\right)(f)=D_{x}(g)$.

D-finite functions: an example (continued)

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)[D]$.

- After Hermite reduction at finite places and at infinity, we get

$$
f=\left(\left(\frac{2}{3 x}-x\right) \omega_{1}+\left(\frac{4}{3 x}-3 x\right) \omega_{2}\right)^{\prime}-\frac{4}{3 x^{2}} \omega_{1}-\frac{2}{3 x^{2}} \omega_{2}
$$

D-finite functions: an example (continued)

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)[D]$.

- After Hermite reduction at finite places and at infinity, we get

$$
f=\left(\left(\frac{2}{3 x}-x\right) \omega_{1}+\left(\frac{4}{3 x}-3 x\right) \omega_{2}\right)^{\prime}-\frac{4}{3 x^{2}} \omega_{1}-\frac{2}{3 x^{2}} \omega_{2}
$$

- All integrable Hermite remainders are:

$$
U=\operatorname{span}_{\mathbb{Q}}\left\{-\frac{2}{x^{2}} \omega_{1}-\frac{1}{x^{2}} \omega_{2}, \frac{1}{x^{3}} \omega_{2},-\frac{2}{x^{3}} \omega_{2}\right\}
$$

D-finite functions: an example (continued)

Example. Let $L=x^{3} D^{2}+\left(3 x^{2}+2\right) D \in \mathbb{Q}(x)[D]$.

- After Hermite reduction at finite places and at infinity, we get

$$
f=\left(\left(\frac{2}{3 x}-x\right) \omega_{1}+\left(\frac{4}{3 x}-3 x\right) \omega_{2}\right)^{\prime}-\frac{4}{3 x^{2}} \omega_{1}-\frac{2}{3 x^{2}} \omega_{2}
$$

- All integrable Hermite remainders are:

$$
U=\operatorname{span}_{\mathbb{Q}}\left\{-\frac{2}{x^{2}} \omega_{1}-\frac{1}{x^{2}} \omega_{2}, \frac{1}{x^{3}} \omega_{2},-\frac{2}{x^{3}} \omega_{2}\right\} .
$$

- So f is integrable in A :

$$
f=\left(\left(\frac{2}{3 x}-x-\frac{2}{3 x}\right) \omega_{1}+\left(\frac{4}{3 x}-3 x-\frac{1}{3 x}\right) \omega_{2}\right)^{\prime} .
$$

Comparison with other reduction algorithms

Summary

Main results.

- Hermite reduction for univariate D-finite functions
- new telescoping algorithm for bivariate D-finite functions

Implementation.
| https://github.com/LixinDu/HermiteReduction

Future work.

- applications of integral bases to symbolic summation

Summary

Main results.

- Hermite reduction for univariate D-finite functions
- new telescoping algorithm for bivariate D-finite functions

Implementation.

- https://github.com/LixinDu/HermiteReduction

Future work.

- applications of integral bases to symbolic summation
Thank you!

