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Fundamental Theorem of Calculus

Newton—Leibniz Theorem. Let f(x) be a continuous function on
la,b] and let F(x) be defined by

F(x) :J f(t)de for all x € [a,b].

Then F(x)' =f(x) for all x € [a,b] and

be(x) dx =F(b)—F(a). (Newton-Leibniz formula)
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Fundamental Theorem of Calculus

Newton—Leibniz Theorem. Let f(x) be a continuous function on
la,b] and let F(x) be defined by

F(x) = rf(t)dt for all x € [a,b].

Then F(x)' =f(x) for all x € [a,b] and

b
J f(x)dx=F(b)—F(a). (Newton-Leibniz formula)
Definite Integration ~~ Indefinite Integration

rlog(x) dx=F(2)—F(1)=2log(2)—1, where F(x) =xlog(x)—x.
1
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Newton—Leibniz Theorem. Let f(x) be a continuous function on
la,b] and let F(x) be defined by
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+o00
J exp(—x?)dx =?
0
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D:R — R is called a derivation on R if

D(f-g)=f-D(g)+g-D(f). (Leibniz's rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example. Let E:=C(x)(t1,12,3,...,t,) with

1+1
n=vVx2+1, n=log(1+#), n=exp|——=),...
1 x y=log(l+1#), 13 P<t1+t%>
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Elementary Extensions

Differential Extension. (R*,D*) is called a differential extension
of (R,D) if R C R* and D* [g=D.

Elementary Extension. Let (E,D) be a differential extension
of (F,D). An element ¢ € E is elementary over F if one of the
following conditions holds:

b tis algebraic over F, i.e., P(t) =0 for some P € F[z] \{0};
b 1 is exponential over F, i.e., D(t)/t = D(u) for some u € F;

b tis logarithmic over F, i.e., D(t) = D(u)/u for some u € F.
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Elementary Functions

Definition. An function f is elementary over C(x) if
FeCX)(n,....tn),

where 1; is elementary over C(x)(t1,...,t;1) forall i=2,...,n.

Example.
T

2
\/log <exp (, / m> +x2+ 1>

Then f(x) is elementary since

feCx)(t1,t2,13,14),

flx) =

where

1
=)= tr=exp(t ty=log(B+x*+1), t1=+/t.
=\ ae s ° exp(t1), t=log(h+x"+1), ta=vn

S. Chen, AMSS Dynamics in Symbolic Integration and Summation

5/26



Symbolic Integration

Let (F,D) and (E,D) be two differential fields such that F C E.

Problem. Given f € F, decide whether there exists g € E
s.t. f=D(g). If g exists, call f integrable in E.
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Symbolic Integration

Let (F,D) and (E,D) be two differential fields such that F C E.

Problem. Given f € F, decide whether there exists g € E
s.t. f=D(g). If g exists, call f integrable in E.

Elementary Integration Problem. Given an elementary function f(x)
over C(x), decide whether [f(x)dx is elementary or not.

Example. The following integrals are not elementary over C(x):

) 1 sin(x) dx
Je"p(’“ & J Tog() J x4 J *x—Dr—2)
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Symbolic Integration

Let (F,D) and (E,D) be two differential fields such that F C E.

Problem. Given f € F, decide whether there exists g € E
s.t. f=D(g). If g exists, call f integrable in E.

Selected books on Symbolic Integration:

COMPUTER -0 21 ‘ Modern Computer Algebra sz
ALGEBRA SEBR

SYSTEMS AND ALGORITHMS
FOR ALGEBRAIC COMPUTATION

Modular Algorithms
in Symbolic Summation

Manuel Bronstein and Symbolic Integration
Symbolic
Integration |
Transcendental
Functions -
Scaoion &=

J.H. Davenport
) Springer . siret

E. Tournier
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Liouville’s Theorem
Theorem (Liouville1835). Let f(x) be elementary over C(x), i.e.,
feF=Cx)(t1,t2,...,1n).
If [f(x)dx is elementary, then

Jf(x)dxz\ggjr D ciloglg) ,

F-part =1
transcendental part

where go,g1,...,8» € F and ¢y,...,c, € C.

Remark. With the above theorem, Liouville proved that the

integrals
1 sin(x)
2
Jexp(x)dx, Jlog(x)dx’ J p dx,...

are not elementary.
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Two classical theorems

Liouville-Hardy Theorem. Let f € C(x). Then f-log(x) is
elementary integrable over C(x) if and only if

f:f+g’ for some ¢ € C and g € C(x).
X

Liouville’s Theorem. Let f,g € C(x). Then f-exp(g) is elementary
integrable over C(x) if and only if

f=h"+g'h for some h € C(x).
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Stability in dynamical systems

A (discrete) dynamical system is a pair (X,¢) with X being any set
and ¢ : X — X a self-map on X.
b Fixed points:

Fix(¢,X) ={xe X | ¢(x) =x}.
» Periodic points:
Per(¢,X) ={x € X | ¢"(x) = x for some n € N\{0}}.
b Stable points:
Stab(¢,X) ={x € X|3Hxi}i>0s.t. xo =x and ¢(x;+) = x; for i € N}.
b Attractive points:

Attrac(¢,X) = ﬂ o'(X

ieN

Fix(¢,X) C Per(¢,X) C Stab(¢,X) C Attrac(¢,X).
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Godelle’'s example

Example. Let X ={(i,j) € Z* |0 <j <max{i—1,0}} and ¢ : X = X
be such that

0 ((i,j)) = (i,j—1)if j > 0 and ¢((i,0)) = (mini —1,0,0).

Then Stab(¢,X) =0 and Attrac(¢,X) ={(i,0) | i <0}.
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Stability in differential fields

Idea. Viewing a differential field (K,D) as a dynamical system.

D(f+¢g)=D(f)+D(g) and D(fg) =gD(f)+fD(g).

Definition. Cx:={c € K|D(c) =0} is called the constant subfield
of (K,D).

Remark. K is a Cg-vector space and D:K — K is Ck-linear.
Proposition. Let (K,D) be a differential field of char. zero. Then
Stab(D,K) = Attrac(D,K).

Stability Problem. Given f € K, decide whether f is stable or not,
i.e., forallie N, f = Di(g;) for some g; € K.
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Structure theorem
Lemma. Let (K,D) be a differential field with D(x) = 1. Then
f €K is stable in K
(3

for all i € N, x'f = D(g,) for some g; € K

Theorem. Let (K,D) be a differential field with D(x) = 1. Then
Stab(D,K) forms a differential Cx[x]-module.

Problem. Is Stab(D,K) always a free Ck[x]-module?

Example. exp(c-x) is stable, so are
xX'exp(c-x), x"sin(c-x), x"cos(c-x),

Integral used in the proof of the irrationality of m:

1
I,(x) = Jl (1—22)"-cos(xz)dz (neN)
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Stable elementary functions

Theorem. Let D=d/dx and f,g € C(x) with g ¢ C. Then
(i) f is always stable in the field of elementary functions.
(ii) f is stable in (C(x),D) iff f € Clx].
(iii) f-log(x) is stable in (&¢(y),D) iff f € Cle,x'.
)

(iv) f-exp(g) is stable in (&¢(y),D) iff f € Clx] and g = ax+b with
a,b e C with a#0.

Examples.
» Stable basic elementary functions: f(x) € C(x), exp(ax+b),

log(x), sin(x), cos(x), arcsin(x) arccos(x), arctan(x),...
» Non-stable basic elementary functions:
tan(x), cot(x), sec(x), csc(x),...
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D-finite power series

Definition. A series f € Cl[[x]] is D-finite over C(x) if it satisfies
ar(x) -D;(f)+---+a1 ‘Dx(f)+aO f=0,
where a; € Clx] and a, # 0. Equivalently,

dimg(y) (span(c(x){Di(f) |ie N}) < 400

@ R. P. Stanley. Differentiably Finite Power Series. European
Journal of Combinatorics, 1: 175-188, 1980.

@ L. Lipshitz. D-Finite Power Series. Journal of Algebra, 122:
353-373, 1989.

ﬁ M. Kauers. D-Finite Functions. Springer, 2023, 602 pages.
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Exact integration

Definition. Let f € C[x]] be D-finite with
pa-DL(f) +pa—t - DI (F) +--+po-f =0.
If d is minimal, then call d the order of f, denoted by ord(f).

Remark. In general, the formal integral int(f):= [ f(x)dx has the
minimal annihilator of order ord(f) + I.

Exact Integration. In 1997, Abramov and van Hoeij gave an
algorithm to decide whether [f(x)dx has an annihilator of the
same order as that of f.

S. Chen, AMSS Dynamics in Symbolic Integration and Summation



Stable D-finite power series

Let f(x) € C[[x]] be a D-finite power series.
Definition. f(x) is stable if 3 {g;}ien € Cllx]] s.t. go =f and

gi=D,(giv1) and ord(g;) = ord(f) for all i € N.

f(x) is eventually stable if 3 m € N s.t. int™(f) is stable.

Theorem. Any D-finite power series is eventually stable.

Example. The Airy function Ai(x) satisfies

y"(x) = xy(x).
By Abramov-van Hoeij's algorithm, we have Ai(x) is not stable,
but is eventually stable with ord(int™(Ai(x))) = 3 for all m > 2.
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Stability index

Definition For any P € C[x](Dy), there exist a nonzero polynomial
Ep(z) 7] and an integer op such that for any s € Z,

ép xSJrO-P l—i-clx +ox + )

where ¢; € C. The polynomial £p(z) is called the indicial
polynomial of P at co.

Theorem. Let f € C[[x]] be D-finite with minimal annihilator

L € C(x)(Dy). Let p € Clx] be the polynomial of minimal degree
such that pL € C[x](Dy) and M be the maximal nonnegative
integer root of &/ (z). Let

Q(L) :=max{0,M + o +deg(p) +1}.

Then Inr?H)(£)) is stable.
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Symbolic summation

on T-shirt

ol <\schen\Desktop \EXamPIEY
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W= e
Com ) G (e B[

| > with(SumTools)

E== ;& =i

u =
. with(Hypergeometric) :
% n\(3-n+k 3.\
Identity: kgo(kj ( Sl ] = [ n)
> £ = binomial(n, k)2-binomia1(3-n+k, 2-n);

f:=binomial (n, k)2 binomial(3 n+ 4 2 n)
> RHS :=|ZeilbergerRecurrence(f, n, k y, 0..n);
RiS:= (=729 n* — 1458 7 — 1053 n* — 324 n

— 36) y(n) + (16 A +48 P 4+52 F+24 n

+4) y(n+1)=0

> LHS := binomial (3-n, n)2;
LHS :=binomial(3 n, n)?

ceval(LHS, n=n+1)));
0

(1)

(2)

)

D norma]( eXpand((—729 A — 1458 7’ — 1053 r — 324 n
—36)-LHS+ (16 r*+48 °+52 £ + 24 n+4)

(4)
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Telescoping

Problem. For a sequence f(k) in some class &(k), decide whether
there exists g(k) € &(k) s.t.

flk)=glk+1)—glk)= Ar(g)
b (X

Examples.

» Rational sums

n

1 " 1 1
k(k+1) 2 "( k) n+ 1

» Hypergeometric sums

n 2k\ 2 n 2%\ 2 2n+2\2
4k 4(n+ 1)(n )
Z (k_(,_kl))42k = ZAk ( izljc) ) = 42n+2+1

k=0 k=0

k=1
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Gosper's algorithm

A sequence H(k) is hypergeometric if

H(k+1)
———— e C(k).

") © (k)
In 1978, Gosper solved the telescoping problem
for hypergeometric terms.

Proc. Natl. Acad. Sci. USA
Vol. 75, No. 1, pp. 40-42, January 1978
Mathematics

Decision procedure for indefinite hypergeometric summation

ial coefficient identiti

R. WILLIAM GOSPER, JR.

Input: A hypergeometric H(k)
Output: A hypergeometric G(k) if

H = A(G)
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Stable hypergeometric sequences

An identity from the book A=B:

2n+2s 2n
o 2s n

AT (20— DIRs — DI 4n [

e ) e (3)

g =0tz -1 =0 n1=0

Problem. Classifying iteratively summable (stable) hypergeometric
sequences.

Classification Theorem. A hypergeometric H(k) is stable iff H(k) is
» Exp-polynomial: p(k)-a* with p € C[k], € C\ {0} or

» Gamma-polynomial: p(k) - (ﬁg with p € Clk],, B € C and

oa—pB ¢ 7.
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P-recursive sequences

Definition. A sequence s: N — K is P-recursive over K if it
satisfies

pa-sin+d)+pa—1-s(n+d—1)+---+po-s(n) =0,

where p; € K|[n] and py-po # 0.

Example. The Catalan numbers C(n) = #(ZJ) satisfy the relation
(n+2)C(n+1)—(4n+2)C(n) =0, with C(0)=1.

Catalan
Numbers

crman 5

C@ =5

/
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Stability in difference fields

Idea. Viewing a difference field (K,A) as a dynamical system.

A(f+g)=A(f)+A(g) and A(fg) =o(f)A(g)+8A(f).

Remark. Let Cx:={c€ K|A(c) =0}. Then K is a Cg-vector space

and A: K — K is Ck-linear.

Proposition. Let (K,A) be a difference field of char. zero. Then
Stab(A,K) = Attrac(A,K).

Stability Problem. Given f € K, decide whether f is stable or not,

ie, forallie N, f =Al(g;) for some g; € K.
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Exact Summation

Definition. Let a(n) be a P-recursive sequence
pa-aln+d)+pg—1-aln+d—1)+---+po-a(n) =0.
If d is minimal, then call d the order of a(n), denoted by ord(a(n)).
Remark. In general, the indefinite sum
s(n)=a(l)+a(2)+---+a(n),
satisfies a linear recurrence of order ord(a)+ 1.

Exact Summation. In 1997, Abramov and van Hoeij gave an
algorithm to decide whether ord(s(n)) = ord(a(n)).
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Stable P-recursive sequences

Let a(n) be a P-recursive sequence.

Definition. a(n) is stable if 3 {g;}ieny € S/I s.t. go =a(n) and
gi=A(giy1) and ord(g;) = ord(a(n)) for all i e N.

a(n) is eventually stable if 3me Ns.t. > " (a(n)) is stable.

Theorem. Any P-recursive sequence is eventually stable.

Example. Let a(n) =1/n and H(n) =~ 11a( ) with A(H) =
We have
(n+1a(n+1)—na(n) =0.

(n+1)H(n+2)—(2n+1)H(n+1)+nH(n) =0.

By Abramov-van Hoeij's algorithm, we have a(n) is not stable, but
is eventually stable at order 2.
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Open problems

Problem. Characterizing stable algebraic functions in (C(x),d/dx).

Problem. Characterizing stable elementary functions over C(x).

Conjecture. Let f(x) be an elementary function over C(x). Then
{ie N|x'-f(x) is elementary integrable over C(x)}

is a union of finitely many arithmetic progressions.
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Thank You!
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