Dynamics in Symbolic Integration and Summation

Shaoshi Chen

KLMM, AMSS Chinese Academy of Sciences

Differential Algebra and Related Topics XI June 4-9, 2023, London, UK

Joint work with Ruyong Feng, Zewang Guo, Xiuyun Li and Wei Lu

Newton-Leibniz Theorem. Let f(x) be a continuous function on [a,b] and let F(x) be defined by

$$F(x) = \int_{a}^{x} f(t)dt$$
 for all $x \in [a,b]$.

Then F(x)' = f(x) for all $x \in [a,b]$ and

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$
 (Newton-Leibniz formula)

Newton-Leibniz Theorem. Let f(x) be a continuous function on [a,b] and let F(x) be defined by

$$F(x) = \int_{a}^{x} f(t)dt$$
 for all $x \in [a,b]$.

Then F(x)' = f(x) for all $x \in [a,b]$ and

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$
 (Newton-Leibniz formula)

Definite Integration ~~ Indefinite Integration

Newton-Leibniz Theorem. Let f(x) be a continuous function on [a,b] and let F(x) be defined by

$$F(x) = \int_{a}^{x} f(t)dt$$
 for all $x \in [a,b]$.

Then F(x)' = f(x) for all $x \in [a,b]$ and

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$
 (Newton-Leibniz formula)

Definite Integration ~~ Indefinite Integration

$$\int_{1}^{2} \log(x) \, dx = F(2) - F(1) = 2\log(2) - 1, \quad \text{where } F(x) = x\log(x) - x.$$

Newton-Leibniz Theorem. Let f(x) be a continuous function on [a,b] and let F(x) be defined by

$$F(x) = \int_{a}^{x} f(t)dt$$
 for all $x \in [a,b]$.

Then F(x)' = f(x) for all $x \in [a,b]$ and

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$
 (Newton-Leibniz formula)

Definite Integration ~~ Indefinite Integration

$$\int_0^{+\infty} \exp(-x^2) \, dx = ?$$

Differential Algebra

Differential Ring and Differential Field. Let R be an integral domain. An additive map $D: R \rightarrow R$ is called a derivation on R if

$$D(f \cdot g) = f \cdot D(g) + g \cdot D(f).$$
 (Leibniz's rule)

The pair (R,D) is called a differential ring. If R is a field, it is then called a differential field.

Example. Let $E := \mathbb{C}(x)(t_1, t_2, t_3, \dots, t_n)$ with

$$t_1 = \sqrt{x^2 + 1}, \quad t_2 = \log(1 + t_1^2), \quad t_3 = \exp\left(\frac{1 + t_1}{t_1 + t_2^2}\right), \dots$$

Elementary Extensions

Differential Extension. (R^*, D^*) is called a differential extension of (R, D) if $R \subseteq R^*$ and $D^*|_R = D$.

Elementary Extension. Let (E,D) be a differential extension of (F,D). An element $t \in E$ is elementary over F if one of the following conditions holds:

• t is algebraic over F, i.e., P(t) = 0 for some $P \in F[z] \setminus \{0\}$;

▶ *t* is exponential over *F*, i.e., D(t)/t = D(u) for some $u \in F$;

▶ *t* is logarithmic over *F*, i.e., D(t) = D(u)/u for some $u \in F$.

Elementary Functions

Definition. An function f is elementary over $\mathbb{C}(x)$ if $f \in \mathbb{C}(x)(t_1, \ldots, t_n),$

where t_i is elementary over $\mathbb{C}(x)(t_1,\ldots,t_{i-1})$ for all $i=2,\ldots,n$.

Example.

$$f(x) = \frac{\pi}{\sqrt{\log\left(\exp\left(\sqrt{\frac{1}{3x^2 + 3x + 1}}\right)^2 + x^2 + 1\right)}}$$

Then f(x) is elementary since

$$f \in \mathbb{C}(x)(t_1, t_2, t_3, t_4),$$

where

$$t_1 = \sqrt{\frac{1}{3x^2 + 3x + 1}}, \quad t_2 = \exp(t_1), \quad t_3 = \log(t_2^2 + x^2 + 1), \quad t_4 = \sqrt{t_3}.$$

Symbolic Integration

Let (F,D) and (E,D) be two differential fields such that $F \subseteq E$.

Problem. Given $f \in F$, decide whether there exists $g \in E$ s.t. f = D(g). If g exists, call f integrable in E.

Symbolic Integration

Let (F,D) and (E,D) be two differential fields such that $F \subseteq E$.

Problem. Given $f \in F$, decide whether there exists $g \in E$ s.t. f = D(g). If g exists, call f integrable in E.

Elementary Integration Problem. Given an elementary function f(x) over $\mathbb{C}(x)$, decide whether $\int f(x) dx$ is elementary or not.

Example. The following integrals are not elementary over $\mathbb{C}(x)$:

$$\int \exp(x^2) dx, \quad \int \frac{1}{\log(x)} dx, \quad \int \frac{\sin(x)}{x} dx, \quad \int \frac{dx}{\sqrt{x(x-1)(x-2)}}, \cdots$$

Symbolic Integration

Let (F,D) and (E,D) be two differential fields such that $F \subseteq E$.

Problem. Given $f \in F$, decide whether there exists $g \in E$ s.t. f = D(g). If g exists, call f integrable in E.

Selected books on Symbolic Integration:

Dynamics in Symbolic Integration and Summation

Liouville's Theorem

Theorem (Liouville1835). Let f(x) be elementary over $\mathbb{C}(x)$, i.e., $f \in F = \mathbb{C}(x)(t_1, t_2, \dots, t_n).$

If $\int f(x) dx$ is elementary, then

$$\int f(x) dx = \underbrace{g_0}_{F\text{-part}} + \underbrace{\sum_{i=1}^n c_i \log(g_i)}_{\text{transcendental part}} ,$$

where $g_0, g_1, \ldots, g_n \in F$ and $c_1, \ldots, c_n \in \mathbb{C}$.

Remark. With the above theorem, Liouville proved that the integrals

$$\int \exp(x^2) \, dx, \quad \int \frac{1}{\log(x)} \, dx, \quad \int \frac{\sin(x)}{x} \, dx, \dots$$

are not elementary.

Two classical theorems

Liouville-Hardy Theorem. Let $f \in \mathbb{C}(x)$. Then $f \cdot \log(x)$ is elementary integrable over $\mathbb{C}(x)$ if and only if

$$f = \frac{c}{x} + g'$$
 for some $c \in \mathbb{C}$ and $g \in \mathbb{C}(x)$.

Liouville's Theorem. Let $f, g \in \mathbb{C}(x)$. Then $f \cdot \exp(g)$ is elementary integrable over $\mathbb{C}(x)$ if and only if

$$f = h' + g'h$$
 for some $h \in \mathbb{C}(x)$.

Stability in dynamical systems

A (discrete) dynamical system is a pair (X, ϕ) with X being any set and $\phi: X \to X$ a self-map on X.

Fixed points:

$$\mathsf{Fix}(\phi, X) = \{ x \in X \mid \phi(x) = x \}.$$

Periodic points:

$$\mathsf{Per}(\phi, X) = \{x \in X \mid \phi^n(x) = x \text{ for some } n \in \mathbb{N} \setminus \{0\}\}.$$

Stable points:

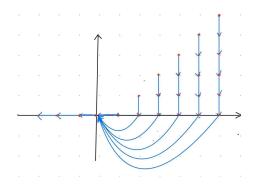
 $\mathsf{Stab}(\phi, X) = \{x \in X \mid \exists \{x_i\}_{i \ge 0} \text{ s.t. } x_0 = x \text{ and } \phi(x_{i+1}) = x_i \text{ for } i \in \mathbb{N} \}.$

Attractive points:

$$\operatorname{Attrac}(\phi, X) = \bigcap_{i \in \mathbb{N}} \phi^i(X).$$

 $\mathsf{Fix}(\phi, X) \subseteq \mathsf{Per}(\phi, X) \subseteq \mathsf{Stab}(\phi, X) \subseteq \mathsf{Attrac}(\phi, X).$

Godelle's example



Example. Let $X = \{(i,j) \in \mathbb{Z}^2 \mid 0 \le j \le \max\{i-1,0\}\}$ and $\phi: X \to X$ be such that

 $\phi((i,j)) = (i,j-1)$ if j > 0 and $\phi((i,0)) = (\min i - 1, 0, 0)$.

Then $\mathsf{Stab}(\phi, X) = \emptyset$ and $\mathsf{Attrac}(\phi, X) = \{(i, 0) \mid i \leq 0\}.$

Stability in differential fields

Idea. Viewing a differential field (K,D) as a dynamical system.

$$D(f+g) = D(f) + D(g)$$
 and $D(fg) = gD(f) + fD(g)$.

Definition. $C_K := \{c \in K \mid D(c) = 0\}$ is called the constant subfield of (K, D).

Remark. K is a C_K -vector space and $D: K \rightarrow K$ is C_K -linear.

Proposition. Let (K,D) be a differential field of char. zero. Then

 $\mathsf{Stab}(D,K) = \mathsf{Attrac}(D,K).$

Stability Problem. Given $f \in K$, decide whether f is stable or not, i.e., for all $i \in \mathbb{N}$, $f = D^i(g_i)$ for some $g_i \in K$.

Structure theorem

Lemma. Let (K,D) be a differential field with D(x) = 1. Then $f \in K$ is stable in K

for all $i \in \mathbb{N}$, $x^i f = D(g_i)$ for some $g_i \in K$

Theorem. Let (K,D) be a differential field with D(x) = 1. Then Stab(D,K) forms a differential $C_K[x]$ -module.

Problem. Is Stab(D,K) always a free $C_K[x]$ -module?

Example. $\exp(c \cdot x)$ is stable, so are

 $x^n \exp(c \cdot x), \quad x^n \sin(c \cdot x), \quad x^n \cos(c \cdot x), \quad \dots$

Integral used in the proof of the irrationality of π :

$$I_n(x) = \int_{-1}^1 (1 - z^2)^n \cdot \cos(xz) \, dz \quad (n \in \mathbb{N})$$

Stable elementary functions

Theorem. Let D = d/dx and $f, g \in \mathbb{C}(x)$ with $g \notin \mathbb{C}$. Then (i) f is always stable in the field of elementary functions. (ii) f is stable in $(\mathbb{C}(x), D)$ iff $f \in \mathbb{C}[x]$. (iii) $f \cdot \log(x)$ is stable in $(\mathscr{E}_{\mathbb{C}(x)}, D)$ iff $f \in \mathbb{C}[x, x^{-1}]$. (iv) $f \cdot \exp(g)$ is stable in $(\mathscr{E}_{\mathbb{C}(x)}, D)$ iff $f \in \mathbb{C}[x]$ and g = ax + b with $a, b \in \mathbb{C}$ with $a \neq 0$.

Examples.

Stable basic elementary functions: $f(x) \in \mathbb{C}(x)$, $\exp(ax+b)$,

 $\log(x)$, $\sin(x)$, $\cos(x)$, $\arcsin(x) \arccos(x)$, $\arctan(x)$,...

Non-stable basic elementary functions:

 $\tan(x)$, $\cot(x)$, $\sec(x)$, $\csc(x)$,...

D-finite power series

Definition. A series $f \in \mathbb{C}[[x]]$ is D-finite over $\mathbb{C}(x)$ if it satisfies

$$a_r(x) \cdot D_x^r(f) + \dots + a_1 \cdot D_x(f) + a_0 \cdot f = 0,$$

where $a_i \in \mathbb{C}[x]$ and $a_r \neq 0$. Equivalently,

 $\dim_{\mathbb{C}(x)} \left(\operatorname{span}_{\mathbb{C}(x)} \{ D_x^i(f) \mid i \in \mathbb{N} \} \right) < +\infty$

- R. P. Stanley. Differentiably Finite Power Series. European Journal of Combinatorics, 1: 175–188, 1980.
- L. Lipshitz. D-Finite Power Series. *Journal of Algebra*, 122: 353–373, 1989.
 - M. Kauers. D-Finite Functions. *Springer*, 2023, 602 pages.

Exact integration

Definition. Let $f \in \mathbb{C}[[x]]$ be D-finite with

$$p_d \cdot D_x^d(f) + p_{d-1} \cdot D_x^{d-1}(f) + \dots + p_0 \cdot f = 0.$$

If d is minimal, then call d the order of f, denoted by ord(f).

Remark. In general, the formal integral $int(f) := \int f(x)dx$ has the minimal annihilator of order ord(f) + 1.

Exact Integration. In 1997, Abramov and van Hoeij gave an algorithm to decide whether $\int f(x)dx$ has an annihilator of the same order as that of f.

Stable D-finite power series

Let $f(x) \in \mathbb{C}[[x]]$ be a D-finite power series. Definition. f(x) is stable if $\exists \{g_i\}_{i \in \mathbb{N}} \in \mathbb{C}[[x]]$ s.t. $g_0 = f$ and $g_i = D_x(g_{i+1})$ and $\operatorname{ord}(g_i) = \operatorname{ord}(f)$ for all $i \in \mathbb{N}$. f(x) is eventually stable if $\exists m \in \mathbb{N}$ s.t. $int^m(f)$ is stable. Theorem. Any D-finite power series is eventually stable. **Example.** The Airy function Ai(x) satisfies $\mathbf{v}''(\mathbf{x}) = \mathbf{x}\mathbf{v}(\mathbf{x}).$

By Abramov-van Hoeij's algorithm, we have Ai(x) is not stable, but is eventually stable with $ord(int^m(Ai(x))) = 3$ for all $m \ge 2$.

Stability index

Definition. For any $P \in \mathbb{C}[x] \langle D_x \rangle$, there exist a nonzero polynomial $\xi_P(z) \in \mathbb{C}[z]$ and an integer σ_P such that for any $s \in \mathbb{Z}$,

$$P(x^{s}) = \xi_{P}(s)x^{s+\sigma_{P}}(1+c_{1}x^{-1}+c_{2}x^{-2}+\cdots)$$

where $c_i \in \mathbb{C}$. The polynomial $\xi_P(z)$ is called the indicial polynomial of P at ∞ .

Theorem. Let $f \in \mathbb{C}[[x]]$ be D-finite with minimal annihilator $L \in \mathbb{C}(x) \langle D_x \rangle$. Let $p \in \mathbb{C}[x]$ be the polynomial of minimal degree such that $pL \in \mathbb{C}[x] \langle D_x \rangle$ and M be the maximal nonnegative integer root of $\xi_L(z)$. Let

$$\Omega(L) := \max\{0, M + \sigma_L + \deg(p) + 1\}.$$

Then $Int^{\Omega(L)}(f)$ is stable.

Symbolic summation on T-shirt

Telescoping

Problem. For a sequence f(k) in some class $\mathfrak{S}(k)$, decide whether there exists $g(k) \in \mathfrak{S}(k)$ s.t.

Examples.

▶ Rational sums

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \Delta_k \left(-\frac{1}{k} \right) = 1 - \frac{1}{n+1}$$

Hypergeometric sums

$$\sum_{k=0}^{n} \frac{\binom{2k}{k}^2}{(k+1)4^{2k}} = \sum_{k=0}^{n} \Delta_k \left(\frac{4k\binom{2k}{k}^2}{4^{2k}}\right) = \frac{4(n+1)\binom{2n+2}{n+1}^2}{4^{2n+2}}$$

Dynamics in Symbolic Integration and Summation

Gosper's algorithm

A sequence H(k) is hypergeometric if

$$\frac{H(k+1)}{H(k)} \in \mathbb{C}(k).$$

In 1978, Gosper solved the telescoping problem for hypergeometric terms.

Proc. Natl. Acad. Sci. USA Vol. 75, No. 1, pp. 40-42, January 1978 Mathematics

Decision procedure for indefinite hypergeometric summation

(algorithm/binomial coefficient identities/closed form/symbolic computation/linear recurrences)

R. WILLIAM GOSPER, JR.

Input: A hypergeometric H(k)Output: A hypergeometric G(k) if

$$H = \Delta_k(G)$$

Bill Gosper

Stable hypergeometric sequences

An identity from the book **A=B**:

$$\sum_{n_s=0}^{n} \sum_{n_{s-1}=0}^{n_s} \cdots \sum_{n_1=0}^{n_2} \frac{\binom{2n_1}{n_1}}{4^{n_1}} = \frac{(2n+2s-1)!!}{(2n-1)!!(2s-1)!!} \frac{\binom{2n}{n}}{4^n} = \frac{\binom{2n+2s}{2s}}{\binom{n+s}{s}} \frac{\binom{2n}{n}}{4^n}$$

Problem. Classifying iteratively summable (stable) hypergeometric sequences.

Classification Theorem. A hypergeometric H(k) is stable iff H(k) is

- Exp-polynomial: $p(k) \cdot \alpha^k$ with $p \in \mathbb{C}[k], \alpha \in \mathbb{C} \setminus \{0\}$ or
- ▶ Gamma-polynomial: $p(k) \cdot \frac{\Gamma(k+\alpha)}{\Gamma(k+\beta)}$ with $p \in \mathbb{C}[k], \alpha, \beta \in \mathbb{C}$ and $\alpha \beta \notin \mathbb{Z}$.

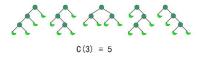
P-recursive sequences

Definition. A sequence $s: \mathbb{N} \to K$ is P-recursive over K if it satisfies

$$p_d \cdot s(n+d) + p_{d-1} \cdot s(n+d-1) + \dots + p_0 \cdot s(n) = 0,$$

where $p_i \in K[n]$ and $p_d \cdot p_0 \neq 0$.

Example. The Catalan numbers $C(n) = \frac{1}{n+1} {2n \choose n}$ satisfy the relation (n+2)C(n+1) - (4n+2)C(n) = 0, with C(0) = 1.



Stability in difference fields

Idea. Viewing a difference field (K, Δ) as a dynamical system.

$$\Delta(f+g) = \Delta(f) + \Delta(g)$$
 and $\Delta(fg) = \sigma(f)\Delta(g) + g\Delta(f).$

Remark. Let $C_K := \{c \in K \mid \Delta(c) = 0\}$. Then K is a C_K -vector space and $\Delta : K \to K$ is C_K -linear.

Proposition. Let (K, Δ) be a difference field of char. zero. Then

 $\mathsf{Stab}(\Delta, K) = \mathsf{Attrac}(\Delta, K).$

Stability Problem. Given $f \in K$, decide whether f is stable or not, i.e., for all $i \in \mathbb{N}$, $f = \Delta^i(g_i)$ for some $g_i \in K$.

Exact Summation

Definition. Let a(n) be a P-recursive sequence

$$p_d \cdot a(n+d) + p_{d-1} \cdot a(n+d-1) + \dots + p_0 \cdot a(n) = 0.$$

If d is minimal, then call d the order of a(n), denoted by ord(a(n)).

Remark. In general, the indefinite sum

$$s(n) = a(1) + a(2) + \dots + a(n),$$

satisfies a linear recurrence of order ord(a) + 1.

Exact Summation. In 1997, Abramov and van Hoeij gave an algorithm to decide whether $\operatorname{ord}(s(n)) = \operatorname{ord}(a(n))$.

Stable P-recursive sequences

Let a(n) be a P-recursive sequence.

Definition. a(n) is stable if $\exists \{g_i\}_{i \in \mathbb{N}} \in S/I$ s.t. $g_0 = a(n)$ and

$$g_i = \Delta(g_{i+1})$$
 and $\operatorname{ord}(g_i) = \operatorname{ord}(a(n))$ for all $i \in \mathbb{N}$.

a(n) is eventually stable if $\exists m \in \mathbb{N}$ s.t. $\sum^{m} (a(n))$ is stable.

Theorem. Any P-recursive sequence is eventually stable.

Example. Let a(n) = 1/n and $H(n) = \sum_{i=1}^{n-1} a(i)$ with $\Delta(H) = a$. We have

$$(n+1)a(n+1) - na(n) = 0.$$

(n+1)H(n+2)-(2n+1)H(n+1)+nH(n)=0.

By Abramov-van Hoeij's algorithm, we have a(n) is not stable, but is eventually stable at order 2.

Open problems

Problem. Characterizing stable algebraic functions in $(\overline{\mathbb{C}(x)}, d/dx)$.

Problem. Characterizing stable elementary functions over $\mathbb{C}(x)$.

Conjecture. Let f(x) be an elementary function over $\mathbb{C}(x)$. Then $\{i \in \mathbb{N} \mid x^i \cdot f(x) \text{ is elementary integrable over } \mathbb{C}(x)\}$

is a union of finitely many arithmetic progressions.

Open problems

Problem. Characterizing stable algebraic functions in $(\overline{\mathbb{C}(x)}, d/dx)$.

Problem. Characterizing stable elementary functions over $\mathbb{C}(x)$.

Conjecture. Let f(x) be an elementary function over $\mathbb{C}(x)$. Then $\{i \in \mathbb{N} \mid x^i \cdot f(x) \text{ is elementary integrable over } \mathbb{C}(x)\}$

is a union of finitely many arithmetic progressions.

Thank You!