Algebraic relations between solutions of differential equations.

Guy Casale

IRMAR, Université de Rennes

An example : the first Painlevé equation

$$
P_{1}: \frac{d^{2} y}{d x^{2}}=6 y^{2}+x
$$

Theorem (K. Nishioka - 2004)
Let y_{1}, \ldots, y_{n} be solutions of P_{1}.
If tr.deg. $\mathbb{C}(x) \mathbb{C}(x)\left(y_{1}, y_{1}^{\prime}, \ldots y_{n}, y_{n}^{\prime}\right)<2 n$ then $\exists i<j$ such that $y_{i}=y_{j}$

There is no subvariety of $\mathbb{C}^{1+2 n}$ invariant by

$$
\frac{\partial}{\partial x}+\sum_{i=1}^{n} z_{i} \frac{\partial}{\partial y_{i}}+\left(6 y_{i}^{2}+x\right) \frac{\partial}{\partial z_{i}}
$$

but the diagonals.

An example : the first Painlevé equation

$$
P_{1}: \frac{d^{2} y}{d x^{2}}=6 y^{2}+x
$$

Theorem (K. Nishioka - 2004)
Let y_{1}, \ldots, y_{n} be solutions of P_{1} and $\mathbb{C}(x) \subset K$ be a differential extension If tr.deg. $K\left(y_{1}, y_{1}^{\prime}, \ldots y_{n}, y_{n}^{\prime}\right)<2 n$ then
(1) $\exists i$ such that $y_{i} \in K^{\text {alg }}$ or
(2) $\exists i<j$ such that $y_{i}=y_{j}$

The problem for other Painlevé equations, $P_{N}(\alpha)$

- $P_{2}(\alpha): \frac{d^{2} y}{d x^{2}}=2 y^{3}+x y+\alpha$
- $P_{3}(\alpha): \frac{d^{2} y}{d x^{2}}=\frac{1}{y}\left(\frac{d y}{d x}\right)^{2}-\frac{1}{x} \frac{d y}{d x}+\frac{\alpha_{1} y^{2}+\alpha_{2}}{x}+\alpha_{3} y^{3}+\frac{\alpha_{4}}{y}$
- $P_{4}(\alpha), \quad P_{5}(\alpha), \quad P_{6}(\alpha)$

To give, for $N \in\{2, \ldots, 6\}$, the parameters α such that n distinct solutions of $P_{N}(\alpha)$ are mutually independent:

$$
\operatorname{tr} \cdot \operatorname{deg} \cdot \mathbb{C}(x) \mathbb{C}(x)\left(y_{1}, y_{1}^{\prime}, \ldots y_{n}, y_{n}^{\prime}\right)=\sum \operatorname{tr} \cdot \operatorname{deg} \cdot \mathbb{C}(x) \mathbb{C}(x)\left(y_{i}, y_{i}^{\prime}\right)
$$

Theorem (J. Nagloo \& A. Pillay - 2017)

Let $N \in\{2, \ldots 6\}$ and α algebraically independent over \mathbb{Q}. If $y_{1}, \ldots y_{n}$ are solutions of $P_{N}(\alpha)$ such that

$$
\operatorname{tr} \cdot \operatorname{deg} \cdot \mathbb{C}(x) \mathbb{C}(x)\left(y_{1}, y_{1}^{\prime}, \ldots y_{n}, y_{n}^{\prime}\right)<2 n
$$

then
(1) $\exists i$ such that tr.deg. $\mathbb{C}(x) \mathbb{C}(x)\left(y_{i}, y_{i}^{\prime}\right)<2$ or
(2) $\exists i<j$ such that $\mathbb{C}\left(x, y_{i}, y_{i}^{\prime}\right)^{\text {alg }}=\mathbb{C}\left(x, y_{j}, y_{j}^{\prime}\right)^{\text {alg }}$

An analogy with groups

Corollary (of Goursat's Lemma)

Let $G_{i}, i=1 \ldots n$, be simple groups and $H \varsubsetneqq G_{1} \times \ldots \times G_{n}$ a subgroup.
Then

- $\exists i$ such that $p r_{i}: H \rightarrow G_{i}$ is not onto, or
- $\exists i<j$ and an isomorphism $\phi: G_{i} \rightarrow G_{j}$ such that the image of $\mathrm{pr}_{i, j}: H \rightarrow G_{i} \times G_{j}$ is the graph of ϕ.

We want to generalize Nagloo-Pillay Theorem replacing in the proof Model Theory by Group Theory.

We need to use differential Galois theory.

The general framework

The differential equations

$$
\left.\begin{array}{cc}
x_{1}: \quad y_{1}^{\left(m_{1}\right)}=E_{1}\left(x, y_{1}, \ldots, y_{1}^{\left(m_{1}-1\right)}\right), \\
\vdots \\
x_{n}: \quad y_{n}^{\left(m_{n}\right)}=E_{n}\left(x, y_{n}, \ldots, y_{n}^{\left(m_{n}-1\right)}\right) .
\end{array}\right\} x^{[n]}
$$

are seen as rational vector fields on the phase spaces

- $M_{1}=\mathbb{C}^{1+m_{1}}$ with coordinates $x, y_{1}, \ldots, y_{1}^{\left(m_{1}-1\right)}$
- $M^{[n]}=\mathbb{C}^{1+\sum m_{i}}$ with coord's $x, y_{1}, \ldots, y_{1}^{\left(m_{1}-1\right)}, y_{2}, \ldots, \ldots y_{n}^{\left(m_{n}-1\right)}$

We want to understand $X^{[n]}$-invariant algebraic subvarieties of $M^{[n]}$ under some hypothesis on each X_{i}.

The Theorem

$$
\left.\begin{array}{c}
x_{1}: \quad y_{1}^{\left(m_{1}\right)}=E_{1}\left(x, y_{1}, \ldots, y_{1}^{\left(m_{1}-1\right)}\right), \\
\vdots \\
x_{n}: \quad y_{n}^{\left(m_{n}\right)}=E_{n}\left(x, y_{n}, \ldots, y_{n}^{\left(m_{n}-1\right)}\right) .
\end{array}\right\} x^{[n]}
$$

Assume the Galois groupoids of X_{i} are big enough. If a solution $y(x)$ of $X^{[n]}$ satisfies

$$
\operatorname{tr} \cdot \operatorname{deg} \cdot \mathbb{C}(x) \mathbb{C}(x)\left(y_{1}, \ldots, y_{1}^{\left(m_{1}-1\right)}, \ldots, y_{n}, \ldots, y_{n}^{\left(m_{n}-1\right)}\right)<\sum m_{i}
$$

then

- $\exists i$ s.t. tr.deg. $\mathbb{C}(x) \mathbb{C}(x)\left(y_{i}, \ldots, y_{i}^{\left(m_{i}-1\right)}\right)<m_{i}$, or
- $\exists i<j$ s.t. $\mathbb{C}\left(x, y_{i}, \ldots, y_{i}^{\left(m_{i}-1\right)}\right)^{\text {alg }}=\mathbb{C}\left(x, y_{j}, \ldots, y_{j}^{\left(m_{j}-1\right)}\right)^{\text {alg }}$

Malgrange pseudogroup

- M an alg. variety over $\mathbb{C}, \operatorname{dim} M=m, \mathbb{C}(M)$ the field of rational functions.
- X a rational vector field on M.

Differential invariants of X

- $\partial_{1}, \ldots, \partial_{m}$ some symbols and $\mathbb{C}(M)_{\infty}$ the ∂-differential field generated by $\mathbb{C}(M)$.
- X_{∞} the extension of X commuting with $\partial \mathrm{s}$
- $\operatorname{Inv}(X)=\left\{H \in \mathbb{C}(M)_{\infty}: X_{\infty} \cdot H=0\right\}$

Example $\quad M=\mathbb{C}^{m}, \quad \mathbb{C}(M)=\mathbb{C}\left(x_{1}, \ldots, x_{m}\right), \quad X=\sum a_{i}(x) \frac{\partial}{\partial x_{i}}$

- $\mathbb{C}(M)_{\infty}=\mathbb{C}\left(x_{i, \alpha} \mid i=1, \ldots m ; \alpha \in \mathbb{N}^{m}\right) ; \partial_{j}\left(x_{i, \alpha}\right)=x_{i, \alpha+1_{j}}$
- $X_{\infty}=\sum_{i, \alpha} \partial^{\alpha}\left(a_{i}\right) \frac{\partial}{\partial x_{i, \alpha}}$
- $\mathcal{L}_{X}\left(\sum w_{i}(x) d x_{i}\right)=0$ if and only if $\forall j, X_{\infty} \cdot\left(\sum w_{i}(x) x_{i, 1_{j}}\right)=0$.

For $\varphi: \mathcal{U} \rightarrow \mathcal{V}$ a biholomorphism between open subsets of M, $\varphi_{\infty}^{*}: \operatorname{Mer}(\mathcal{V})_{\infty} \rightarrow \operatorname{Mer}(\mathcal{U})_{\infty}$ is the morphism extending φ^{*} and commuting with $\partial \mathrm{s}$.

Definition

$$
\operatorname{Mal}(X)=\left\{\varphi \mid \forall H \in \operatorname{Inv}(X) \varphi_{\infty}^{*}(H)=H\right\}
$$

Example If $\mathcal{L}_{X} \omega=0$ then $\forall \varphi \in \operatorname{Mal}(X), \varphi^{*} \omega=\omega$.
Example $\quad X=\frac{\partial}{\partial x_{1}}+x_{3} \frac{\partial}{\partial x_{2}}+E\left(x_{1}, x_{2}, x_{3}\right) \frac{\partial}{\partial x_{3}}$

$$
\theta \text { is a } 2 \text {-form such that } d \theta=0, i_{X} \theta=0
$$

$$
\operatorname{Mal}(X) \subset\left\{\varphi \mid \varphi^{*} X=X, \varphi^{*} d x_{1}=d x_{1}, \varphi^{*} \theta=\theta\right\}
$$

$$
\operatorname{Gal}\left(X / \mathbb{C}\left(x_{1}\right)\right)=\operatorname{Mal}(X) \cap\left\{\varphi \mid \varphi^{*} x_{1}=x_{1}\right\}
$$

Example $\quad X=\frac{\partial}{\partial x_{1}}+x_{3} \frac{\partial}{\partial x_{2}}+E(x) \frac{\partial}{\partial x_{3}}$
θ is a 2 -form such that $d \theta=0, i_{X} \theta=0$

$$
\operatorname{Mal}(X) \subset\left\{\varphi \mid \varphi^{*} X=X, \varphi^{*} d x_{1}=d x_{1}, \varphi^{*} \theta=\theta\right\}
$$

$$
\operatorname{Gal}\left(X / \mathbb{C}\left(x_{1}\right)\right)=\operatorname{Mal}(X) \cap\left\{\varphi \mid \varphi^{*} x_{1}=x_{1}\right\}
$$

In local coordinates x_{1}, y, z such that $X=\frac{\partial}{\partial x_{1}}$ and $\theta=d y \wedge d z$,

$$
\begin{aligned}
& \varphi \in \operatorname{Mal}(X) \Longrightarrow \varphi\left(x_{1}, y, z\right)=\left(x_{1}+c, f(y, z), g(y, z)\right) \text { with } \frac{\partial(f, g)}{\partial(y, z)}=1 \\
& \varphi \in \operatorname{Gal}\left(X / \mathbb{C}\left(x_{1}\right)\right) \Longrightarrow \ldots \ldots \text { with } \quad c=0
\end{aligned}
$$

Examples: Painlevé equations, $P_{N}(\alpha)$

- a vector field $X_{N}(\alpha)=\frac{\partial}{\partial x_{1}}+x_{3} \frac{\partial}{\partial x_{2}}+(\ldots \ldots) \frac{\partial}{\partial x_{3}}$
- a 2-form $\theta_{N, \alpha}$ s.t. $d \theta_{N, \alpha}=0$ and $i_{X_{N}(\alpha)} \theta_{N, \alpha}=0$

Theorem

$$
\operatorname{Mal}\left(X_{N}(\alpha)\right)=\left\{\varphi \mid \varphi^{*} X_{N}(\alpha)=X_{N}(\alpha), \varphi^{*} d x_{1}=d x_{1}, \varphi^{*} \theta=\theta\right\}
$$

- $N=1$
- $N=6$ except for Picard parameters (Cantat-Loray)
- $N=2, \alpha \in \frac{1}{2} \mathbb{Z}(+$ Weil $)$
- Any N, a general (+ Davy)

These are examples of "big enough" Galois groupoids.

- $\left(M_{i}, X_{i}\right), i=1 \ldots n$, and $\left(M^{[n]}, X^{[n]}\right)$ as before.
- $\pi_{i}: M_{i} \rightarrow \mathbb{A}^{1}$ s.t. $d \pi\left(X_{i}\right)=\frac{\partial}{\partial x_{1}}$
- θ_{i} a closed m_{i}-form on M_{i} with $i_{X_{i}} \theta_{i}=0$.

Theorem
Assume $\operatorname{Mal}\left(X_{i}\right)=\left\{\varphi \mid \varphi^{*} X_{i}=X_{i}, \varphi^{*} d x_{1}=d x_{1}, \varphi^{*} \theta_{i}=\theta_{i}\right\}$
If $V \nsubseteq M^{[n]}$ is a $X^{[n]}$-invariant subvariety then

- $\exists i, p_{i}(V) \subset M_{i}$ has dimension $<m$
- $\exists i<j, p r_{i, j}(V) \subset M_{i} \times M_{\mathbb{A}^{1}}$ has dimension m.

The proof by induction on n

Assume that projections $p r_{1}: V \rightarrow M$ et $p r_{2, \ldots n}: V \rightarrow M^{[n-1]}$ are dominant.

Theorem

If $\rho:(M, X) \rightarrow(N, Y)$ is rational, dominant and $d \rho(X)=Y$ then ρ induced a dominant morphism $\rho_{*}: \operatorname{Mal}(X) \rightarrow \operatorname{Mal}(Y)$.

Assume all $p r_{i}$ are dominant.
One gets dominant projections $\left(p r_{i}\right)_{*}: \operatorname{Gal}\left(X^{[n]} / \mathbb{A}^{1}\right) \rightarrow \operatorname{Gal}\left(X_{i} / \mathbb{A}^{1}\right)$ and a inclusion $\operatorname{Gal}\left(X^{[n]} / \mathbb{A}^{1}\right) \subset \operatorname{Gal}\left(X_{1} / \mathbb{A}^{1}\right) \times \ldots \times \operatorname{Gal}\left(X_{n} / \mathbb{A}^{1}\right)$

Lemma

$\operatorname{Gal}\left(X^{[n]} / \mathbb{A}^{1}\right)=\operatorname{Gal}\left(X_{1} / \mathbb{A}^{1}\right) \times \ldots \times \operatorname{Gal}\left(X_{n} / \mathbb{A}^{1}\right)$

- As $\operatorname{Gal}\left(X_{i} / \mathbb{A}^{1}\right)$ are simple and projections are onto, it is enough to prove it for $n=2$.
- Lie, Cartan: if G_{1} and G_{2} are infinite dimensional Lie pseudogroup then there is no $H \subset G_{1} \times G_{2}$ whose projections are finite and onto.

Lemma

$p r_{2, \ldots, n}: V \rightarrow M^{[n-1]}$ is generically finite.
Fibers give a finite dimensional family of subvarieties of dimension
$<m-1$ in fibres of $M_{i} \rightarrow \mathbb{A}$ and invariant under $\operatorname{Gal}\left(X_{i} / \mathbb{A}\right) \ldots$
This pseudogroup acts transitively on germs of curves.

Lemma

If \mathcal{F} is a codimension $m X^{[n]}$-invariant foliation on V then $\exists i>1$ s.t. leaves are fibers of $p r_{i}$.

Same argument is used on $M^{[n-1]}$ to describe invariants foliations under the action of $\operatorname{Gal}\left(X^{[n-1]} / \mathbb{A}^{1}\right)$.

Apply this to the foliation of V by fibers of $p r_{1}$, the lemma proves the theorem.

Remark 1 The condition depends only on the underlying foliation, you can change the independent variable :
From P_{1} you get Mal of

$$
\left(x^{\prime \prime}+\left(x^{\prime}\right)^{3}\right)^{2}+24 z x\left(x^{\prime}\right)^{6}-\left(x^{\prime}\right)^{5}=0 \quad ; \quad \prime=d / d z
$$

Adding $x^{\prime} \neq 0$ should define a strongly minimal set.
Remark 2 If you know an algebraic solution of X, you can verify the hypothesis on $\operatorname{Mal}(X)$ using your computer ... or by hands
If $n \geq 2, P \in \mathbb{C}(x, y)$ with $P(x, 0)$ having a pole of order k with $1 \leq k \leq n+3$, then Mal of

$$
\frac{d^{2} y}{d x^{2}}=x y+y^{n} P(x, y)
$$

satisfies our hypothesis.

Remark 1 The condition depends only on the underlying foliation, you can change the independent variable :
From P_{1} you get Mal of

$$
\left(x^{\prime \prime}+\left(x^{\prime}\right)^{3}\right)^{2}+24 z x\left(x^{\prime}\right)^{6}-\left(x^{\prime}\right)^{5}=0 \quad ; \quad \prime=d / d z
$$

Adding $x^{\prime} \neq 0$ should define a strongly minimal set.
Remark 2 If you know an algebraic solution of X, you can verify the hypothesis on $\operatorname{Mal}(X)$ using your computer ... or by hands
If $n \geq 2, P \in \mathbb{C}(x, y)$ with $P(x, 0)$ having a pole of order k with $1 \leq k \leq n+3$, then Mal of

$$
\frac{d^{2} y}{d x^{2}}=x y+y^{n} P(x, y)
$$

satisfies our hypothesis.
Thank you for your attention

