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An example : the first Painlevé equation

&y

92 = 6y2 + x

P1:

Theorem (K. Nishioka - 2004)
Let y1,...,yn be solutions of P;.

If tr.deg.c(x)C(X)(Y1s Y15 - - - Yo ¥n) < 2n then 3 i < j such that y; = y;

There is no subvariety of C*2" invariant by

0
+Zz, 6y, er)az

but the diagonals.



An example : the first Painlevé equation

d’y 2
Pl:ﬁ:6y + x

Theorem (K. Nishioka - 2004)
Let y1,...,yn be solutions of Py and C(x) C K be a differential extension

If tr.deg.,c K(y1, Y15 - - - Voo ¥h) < 2n then
@ 3/ such that y; € K& or
@ i <j such that y; = y;




The problem for other Painlevé equations, Py(«a)

dzy

on(a):ﬁ:2y3+xy+a
o Pya): SY L (N 1dy airar
S\ Tdx?2 y \dx x dx X asy y

o Py(ar), Ps(a), Ps(a)

To give, for N € {2,...,6}, the parameters « such that n distinct
solutions of Py(«) are mutually independent:

tr.deg.coy CONY1 Y, - Vor ¥i) = D _ tr.deg. e CO)(v;, 1)



Theorem (J. Nagloo & A. Pillay - 2017)
Let N € {2,...6} and « algebraically independent over Q.
If y1,...yn are solutions of Py(«) such that
tr.deg.coCO) V1, Y15 Yoo ¥Yn) < 21
then
Q 3/ such that tr.deg.c(,C(x)(y;, /) <2 or
Q@ 3/ < such that C(x,y;, y/)*& = C(x,y;, y/)*®




An analogy with groups

Corollary (of Goursat's Lemma)
Let G;, i =1...n, be simple groups and H & Gy X ... X G, a subgroup.
Then

e 1/ such that pr; : H — G; is not onto, or

e 3/ < j and an isomorphism ¢ : G; = G;
such that the image of pr; j : H — G; X G; is the graph of ¢.

We want to generalize Nagloo-Pillay Theorem replacing in the proof
Model Theory by Group Theory.

We need to use differential Galois theory.



The general framework

The differential equations

Xl . y1(m1) = El <X7Y17' B 7y1(m1_1)) )

Xl
Xn . }/r(wm") = En (X,yn7 . ,ygmn71)> .
are seen as rational vector fields on the phase spaces
o M; = C*™ with coordinates x, y;, ..., y\™ Y
o Ml = CH*Xmi with coord's x, y;, . .. ,yl(ml_l),y2, e .y,(,'""_l)

We want to understand X["l-invariant algebraic subvarieties of M under
some hypothesis on each X;.



The Theorem

X o™= F (X,y1,-~~»y1(ml_1)) ,

xn
Xn y,(,m") =E, (x,yn7 e ,y,sm”_l)) .
Assume the Galois groupoids of X; are big enough.
If a solution y(x) of X[l satisfies
tr.deg.c C(x)(y1, - - - ANy b)) < Z m;
then
o Jist. tr.deg.cu)Cx)(yi, .- ,y,-(m’_l)) < mj, or

e Ji< st (C(x,y,-,...,yl i~ )alg = C(x, yj’.__’y(mﬁl))alg



Malgrange pseudogroup

@ M an alg. variety over C, dim M = m, C(M) the field of rational
functions.

@ X a rational vector field on M.

Differential invariants of X

@ 01,...,0m some symbols and C(M), the O-differential field
generated by C(M).

@ X, the extension of X commuting with Js
o Inv(X)={H e C(M) : Xoo - H=10}

Example M=C" C(M)=C(xs,...,xn), X=3 aj(x)Z
° (C( Joo = C(Xiali=1,...ma € N"); 0j(Xia) = Xi,aty,
ZI @ 804( )BX; o
° ﬁX(Z w;i(x)dx;) = 0 if and only if Vj, Xs - (3 wi(x)xi1,) = 0.



For ¢ : U — V a biholomorphism between open subsets of M,
i Mer(V)oo — Mer(U)oo is the morphism extending ¢* and
commuting with Js.

Definition

Mal(X) = {¢ | VH € Inv(X) ¢5 (H) = H}

Example If Lxw = 0 then Vo € Mal(X), ¢*w = w.

_ 0 9 1é)
Example X = B —|—X367X2 + E(Xl,XQ,X?,)fo3

0 is a 2-form such that df =0, ix0 =0

Mal(X) C {¢ | "X = X, dxq = dx1, 90 = 6}

Gal(X/C(x1)) = Mal(X)N{y |¢*x1 = x1 }



Example X = 8%1 +X3aix2 + E(X)aix3

0 is a 2-form such that d6 =0, ix0 =0

Mal(X) C {¢ | ¢*X = X, ¢ dx1 = dx1, "0 = 0}

Gal(X/C(x1)) = Mal(X)N{y |p"x1 = x1}

In local coordinates xi, y, z such that X = % and 6 = dy A dz,
o(f.g) _4

© c Mal(X) — QO(X],_V,Z) = (X1 + C, f(y,Z)ag(}/aZ)) with a(y7z) =

v € Gal(X/C(x)) = ...... with ¢=0




Examples : Painlevé equations, Py(«a)

@ a vector field Xy(«a) = 8%1 + X3B£><z +(... )8%3

@ a 2-form QN,a s.t. d@/\ha =0 and I'XN(Q)QN,@ =0

Theorem

Mal(Xn(a)) = { | " Xn(a) = Xn(a), 9" dxy = dxi, "6 = 8}
N=1

N = 6 except for Picard parameters (Cantat-Loray)

N=2 a€ciZ(+ Weil)

Any N, « general (+ Davy)

These are examples of “big enough” Galois groupoids.



o (Mi,X;),i=1...n, and (/\/I["] X[1) as before.
° ;! M—>Alst dn(X;) = 6)(1

@ 0; a closed mj-form on M; with ix,0; = 0.

Theorem
Assume Mal(X;) = {¢ | ¢*X; = X;, p*dxqy = dx1, 0*0; = 6,}
If v g MU js a X1l invariant subvariety then
e 34, pri(V) C M; has dimension < m
e Ji<j, prij(V)C M x M; has dimension m.
Al




The proof by induction on n

Assume that projections pry : V — M et pra,_,: V — MI"=1 are
dominant.

Theorem

Ifp: (M, X)--»(N,Y) is rational, dominant and dp(X) =Y then p
induced a dominant morphism p,. : Mal(X) — Mal(Y).

Assume all pr; are dominant.
One gets dominant projections (pr;). : Gal(X["l/A') — Gal(X;/A?!)
and a inclusion Gal(X["/A') € Gal(Xi/A) x ... x Gal(X,/A?)



Lemma
Gal(X["/AY) = Gal(X1/AY) x ... x Gal(X,/A!)

e As Gal(X;/A!) are simple and projections are onto, it is enough to
prove it for n = 2.

e Lie, Cartan : if Gy and G are infinite dimensional Lie pseudogroup
then there is no H C Gy x G, whose projections are finite and onto.



Lemma

pra....n: V — M= s generically finite.

Fibers give a finite dimensional family of subvarieties of dimension
< m —1in fibres of M; — A and invariant under Gal(X;/A) ...
This pseudogroup acts transitively on germs of curves.

Lemma

If F is a codimension m X!"\-invariant foliation on V then 3 i > 1 s.t.
leaves are fibers of pr; .

Same argument is used on M["~1 to describe invariants foliations under
the action of Gal(XI"~1/A%).

Apply this to the foliation of V by fibers of pri, the lemma proves the
theorem.



Remark 1 The condition depends only on the underlying foliation,
you can change the independent variable :
From P; you get Mal of

(x” + (x/)3)2 +24zx(xX)° = (X)* =0 ; '=d/dz
Adding x’ # 0 should define a strongly minimal set.

Remark 2 If you know an algebraic solution of X, you can verify the
hypothesis on Mal(X) using your computer ... or by hands

If n>2, P e C(x,y) with P(x,0) having a pole of order k with
1 < k < n+ 3, then Mal of

d’y n
22 =Ty P(x,y)

satisfies our hypothesis.



Remark 1 The condition depends only on the underlying foliation,
you can change the independent variable :
From P; you get Mal of

(x” + (x/)3)2 +24zx(xX)° = (X)* =0 ; '=d/dz
Adding x’ # 0 should define a strongly minimal set.

Remark 2 If you know an algebraic solution of X, you can verify the
hypothesis on Mal(X) using your computer ... or by hands

If n>2, P e C(x,y) with P(x,0) having a pole of order k with
1 < k < n+ 3, then Mal of

d’y n
22 =Y TYP(xy)
satisfies our hypothesis.

Thank you for your attention









