On DifferentiaIAIgebra and Kolchin's Irreducibility Theorem

François Boulier, David Bourqui, François Lemaire, Adrien Poteaux

$$
\text { June 4, } 2023
$$

Context

DifferentialAlgebra is a software project hosted at
codeberg.org/francois.boulier/DifferentialAlgebra
It contains the BLAD libraries (C code, embedded in the Maple DifferentialAlgebra package) and the BMI interface library

A new DifferentialAlgebra package has been developed on top of Python/sympy (demo at the end of the talk)

There is a gallery directory to show casual visitors what is the point New examples welcome!
[Kolchin 1973, Chap. IV, Prop. 10] is proved with elementary arguments. There are other proofs in algebraic geometry based on the resolution of singularities

Kolchin Irreducibility Theorem

Kolchin (1973) Chap. IV Prop. 10 page 200

Let \mathfrak{p}_{0} be a prime ideal of $\mathscr{F}\left[y_{1}, \ldots, y_{n}\right]$ of dimension d. Then the perfect differential ideal $\left\{\mathfrak{p}_{0}\right\}$ is a prime differential ideal of $\mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$

The theorem holds for any number m of derivation operators

Kolchin Irreducibility Theorem

Kolchin (1973) Chap. IV Prop. 10 page 200

Let \mathfrak{p}_{0} be a prime ideal of $\mathscr{F}\left[y_{1}, \ldots, y_{n}\right]$ of dimension d. Then the perfect differential ideal $\left\{\mathfrak{p}_{0}\right\}$ is a prime differential ideal of $\mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$

The theorem holds for any number m of derivation operators
\mathscr{F} differential field of characteristic zero (the Theorem false in char. $p>0$)

Kolchin Irreducibility Theorem

Kolchin (1973) Chap. IV Prop. 10 page 200

Let \mathfrak{p}_{0} be a prime ideal of $\mathscr{F}\left[y_{1}, \ldots, y_{n}\right]$ of dimension d. Then the perfect differential ideal $\left\{\mathfrak{p}_{0}\right\}$ is a prime differential ideal of $\mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$
$\mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$ differential polynomial ring in n differential indeterminates ($=n$ functions of m independent variables)
$\mathscr{F}\left[y_{1}, \ldots, y_{n}\right] \subset \mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$ ring of the order zero differential polynomials (\simeq usual non differential polynomials)
$y_{1}^{2}-y_{2}^{3} \in \mathscr{F}\left[y_{1}, \ldots, y_{n}\right]$
$\dot{y}_{1}^{2}-4 y_{1} \in \mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\} \backslash \mathscr{F}\left[y_{1}, \ldots, y_{n}\right]$

Kolchin Irreducibility Theorem

Kolchin (1973) Chap. IV Prop. 10 page 200

Let \mathfrak{p}_{0} be a prime ideal of $\mathscr{F}\left[y_{1}, \ldots, y_{n}\right]$ of dimension d. Then the perfect differential ideal $\left\{\mathfrak{p}_{0}\right\}$ is a prime differential ideal of $\mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$

The Theorem is not as expected as a casual reader would think
Def The perfect differential ideal $\left\{\mathfrak{p}_{0}\right\}$ is the radical of the ideal generated by the elements of p_{0} and their derivatives up to any order

Example The ideal $\mathfrak{p}_{0}=\left(y_{2}^{2}-y_{1}^{3}\right)$ is prime
The differential ideal $\left\{\mathfrak{p}_{0}\right\}$ contains $y_{2}\left(3 y_{2} \dot{y}_{1}-2 \dot{y}_{2} y_{1}\right)$
Is it clear that $3 y_{2} \dot{y}_{1}-2 \dot{y}_{2} y_{1} \in\left\{y_{2}^{2}-y_{1}^{3}\right\}$?

Kolchin Irreducibility Theorem

Kolchin (1973) Chap. IV Prop. 10 page 200

Let \mathfrak{p}_{0} be a prime ideal of $\mathscr{F}\left[y_{1}, \ldots, y_{n}\right]$ of dimension d. Then the perfect differential ideal $\left\{\mathfrak{p}_{0}\right\}$ is a prime differential ideal of $\mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$

The Theorem is not as expected as a casual reader would think
Example Drop the order zero hypothesis and consider $\dot{y}^{2}-4 y$
The non differential ideal $\left(\dot{y}^{2}-4 y\right)$ is prime
The perfect differential ideal $\left\{\dot{y}^{2}-4 y\right\}$ is not prime:

$$
\left\{\dot{y}^{2}-4 y\right\}=\left\{\dot{y}^{2}-4 y, \ddot{y}-2\right\} \cap\{y\}
$$

Characteristic Sets

Fact Any prime ideal can be presented by a characteristic set A

Example

$$
\left\{\dot{y}^{2}-4 y, \ddot{y}-2\right\}=[A]: H_{A}^{\infty}
$$

where

- A is the singleton $\dot{y}^{2}-4 y$ and
- H_{A} is the product of the initials $(=1)$ and separants $(=2 \dot{y})$ of A

Def $[A]: H_{A}^{\infty}=\left\{p \in \mathscr{F}\{y\} \mid \exists d \geq 0, H_{A}^{d} p \in[A]\right\}$
Let us prove $\ddot{y}-2 \in[A]: H_{A}^{\infty}$

Characteristic Sets

Fact Any prime ideal can be presented by a characteristic set A

Example

$$
\left\{\dot{y}^{2}-4 y, \ddot{y}-2\right\}=[A]: H_{A}^{\infty}
$$

where

- A is the singleton $\dot{y}^{2}-4 y$ and
- H_{A} is the product of the initials $(=1)$ and separants $(=2 \dot{y})$ of A

Def $[A]: H_{A}^{\infty}=\left\{p \in \mathscr{F}\{y\} \mid \exists d \geq 0, H_{A}^{d} p \in[A]\right\}$
Let us prove $\ddot{y}-2 \in[A]: H_{A}^{\infty}$
We have $\dot{y}^{2}-4 y \in[A]: H_{A}^{\infty}$

Characteristic Sets

Fact Any prime ideal can be presented by a characteristic set A

Example

$$
\left\{\dot{y}^{2}-4 y, \ddot{y}-2\right\}=[A]: H_{A}^{\infty}
$$

where

- A is the singleton $\dot{y}^{2}-4 y$ and
- H_{A} is the product of the initials $(=1)$ and separants $(=2 \dot{y})$ of A
$\operatorname{Def}[A]: H_{A}^{\infty}=\left\{p \in \mathscr{F}\{y\} \mid \exists d \geq 0, H_{A}^{d} p \in[A]\right\}$
Let us prove $\ddot{y}-2 \in[A]: H_{A}^{\infty}$
We have $\dot{y}^{2}-4 y \in[A]: H_{A}^{\infty}$
Thus $2 \dot{y}(\ddot{y}-2) \in[A]: H_{A}^{\infty}$

Characteristic Sets

Fact Any prime ideal can be presented by a characteristic set A

Example

$$
\left\{\dot{y}^{2}-4 y, \ddot{y}-2\right\}=[A]: H_{A}^{\infty}
$$

where

- A is the singleton $\dot{y}^{2}-4 y$ and
- H_{A} is the product of the initials $(=1)$ and separants $(=2 \dot{y})$ of A

Def $[A]: H_{A}^{\infty}=\left\{p \in \mathscr{F}\{y\} \mid \exists d \geq 0, H_{A}^{d} p \in[A]\right\}$
Let us prove $\ddot{y}-2 \in[A]: H_{A}^{\infty}$
We have $\dot{y}^{2}-4 y \in[A]: H_{A}^{\infty}$
Thus $2 \dot{y}(\ddot{y}-2) \in[A]: H_{A}^{\infty}$
Thus $\ddot{y}-2 \in[A]: H_{A}^{\infty}$

Summary of the Talk

Let \mathfrak{p}_{0} be a prime ideal of $\mathscr{F}\left[y_{1}, \ldots, y_{n}\right]$ of dimension d. Then the perfect differential ideal $\left\{\mathfrak{p}_{0}\right\}$ is a prime differential ideal of $\mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$

The proof relies on elementary arguments but it is subtle and misleading.
Some misunderstanding can be avoided by illustrating/restating it through examples relying on characteristic sets

Remark Ritt uses characteristic sets both as polynomial system solving tools and theoretical tools (the Basis Theorem follows from: every set has a characteristic set)

A Base Field which is a Differential Field

The base field \mathscr{F} is a differential field.
It could be the field of fractions of a residue class ring.
The residue class ring of a differential polynomial ring by a prime differential ideal, presented by a characteristic set

Take $\mathscr{F}=\mathbb{Q}\langle\varphi\rangle$ where φ defining equation (a characteristic set) is (say)

$$
C\{\ddot{\varphi}-1 . \quad(\mathscr{F})
$$

An Order Zero Ideal Over a Differential Field

Let \mathfrak{p}_{0} be a prime ideal of $\mathscr{F}\left[y_{1}, \ldots, y_{n}\right] \ldots$
Let us consider a variant of $y_{2}^{2}-y_{1}^{3}$
Take $\mathfrak{p}_{0}=(A): H_{A}^{\infty}$ where (say)

$$
\begin{aligned}
A & =\left(y_{3}-y_{2}\right)^{2}-\dot{\varphi} y_{1}^{3} \\
H_{A} & =2\left(y_{3}-y_{2}\right) .
\end{aligned}
$$

The whole construct (non trivial base field $+\mathfrak{p}_{0}$) can be presented by a single characteristic set

$$
C\left\{\begin{array}{l}
\left(y_{3}-y_{2}\right)^{2}-\dot{\varphi} y_{1}^{3} \tag{0}\\
\ddot{\varphi}-1
\end{array}\right.
$$

The Second Paragraph of Kolchin's Proof

At this stage, Kolchin has established that the prime ideal \mathfrak{p}_{0} has an order zero characteristic set A (so that $\mathfrak{p}_{0}=(A): H_{A}^{\infty}$), which defines also a prime differential ideal $\mathfrak{p}=[A]: H_{A}^{\infty}$ and \ldots

It is clear that $\left\{p_{0}\right\} \subset \mathfrak{p}$. Let $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be any zero of p_{0}. By Chapter 0 , Section 16, Corollary 3 to Proposition 11, there exist power series $Q_{1}, \ldots, Q_{n} \in$ $\mathscr{d}[[c]]$ such that each element of p_{0} vanishes at $\left(Q_{1}, \ldots, Q_{n}\right), H_{A}$ does not, and $Q_{j}(0)=\alpha_{j}(1 \leqslant j \leqslant n)$. Now, \mathscr{Z} is universal over some differential field of definition $\mathscr{F}_{0} \subset \mathscr{F}$ of p that is also a field of definition of p_{0}. Therefore there exists a point $\left(\xi_{1}, \ldots, \xi_{n}\right)$ that is a generic differential specialization of $\left(Q_{1}, \ldots, Q_{n}\right)$ over \mathscr{F}_{0}. It is clear that $\left(\xi_{1}, \ldots, \xi_{n}\right)$ is a zero of A but not of H_{A}, hence is a zero of $\mathfrak{p}=[\mathrm{A}]: H_{\mathrm{A}}^{\infty}$, and that $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a differential specialization of $\left(\xi_{1}, \ldots, \xi_{n}\right)$ over \mathscr{F}_{0}. It follows that ($\alpha_{1}, \ldots, \alpha_{n}$) is a zero of p. Therefore (by Section 2, Theorem 1) $p \subset\left\{p_{0}\right\}$, whence $p=\left\{p_{0}\right\}$.
$\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a differential zero
Theorem 1 is a differential Nullstellensatz: if some f vanishes over every zero of a perfect differential ideal \mathfrak{A} then $f \in \mathfrak{A}$

We may restrict $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ to a zero with coordinates in a finite differential field extension of \mathscr{F}

It is clear that $\left\{p_{0}\right\} \subset \mathfrak{p}$. Let $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be any zero of p_{0}. By Chapter 0 , Section 16, Corollary 3 to Proposition 11, there exist power series $Q_{1}, \ldots, Q_{n} \in$ $\mathscr{q}[[c]]$ such that each element of p_{0} vanishes at $\left(Q_{1}, \ldots, Q_{n}\right), H_{A}$ does not, and $Q_{j}(0)=\alpha_{j}(1 \leqslant j \leqslant n)$. Now, \mathscr{Z} is universal over some differential field of definition $\mathscr{F}_{0}=\mathscr{F}$ of p that is also a field of definition of p_{0}. Therefore there exists a point $\left(\xi_{1}, \ldots, \xi_{n}\right)$ that is a generic differential specialization of $\left(Q_{1}, \ldots, Q_{n}\right)$ over \mathscr{F}_{0}. It is clear that $\left(\xi_{1}, \ldots, \xi_{n}\right)$ is a zero of A but not of H_{A}, hence is a zero of $\mathfrak{p}=[\mathrm{A}]: H_{\mathrm{A}}^{\infty}$, and that $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a differential specialization of $\left(\xi_{1}, \ldots, \xi_{n}\right)$ over \mathscr{F}_{0}. It follows that $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a zero of p. Therefore (by Section 2, Theorem 1) $p \subset\left\{p_{0}\right\}$, whence $p=\left\{p_{0}\right\}$.

The Zero $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$

Drop the index, introduce some $\alpha \in \mathscr{G}=\mathscr{F}<\alpha>$ through some α-defining equation, stacked over C

$$
C \begin{cases}\dot{\alpha}^{2}-\varphi \alpha, & (\mathscr{G}) \\ \left(y_{3}-y_{2}\right)^{2}-\dot{\varphi} y_{1}^{3}, & \left(\mathfrak{p}_{0}, A\right) \\ \ddot{\varphi}-1 . & (\mathscr{F})\end{cases}
$$

The Zero $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$

Drop the index, introduce some $\alpha \in \mathscr{G}=\mathscr{F}<\alpha>$ through some α-defining equation, stacked over C

$$
C \begin{cases}\dot{\alpha}^{2}-\varphi \alpha, & (\mathscr{G}) \\ \left(y_{3}-y_{2}\right)^{2}-\dot{\varphi} y_{1}^{3}, & \left(\mathfrak{p}_{0}, A\right) \\ \ddot{\varphi}-1 . & (\mathscr{F})\end{cases}
$$

Pick a zero of \mathfrak{p}_{0} hence of A, which annihilates $H_{A}=2\left(y_{3}-y_{2}\right)$ also (the issue in the proof arises for singular zeros)

$$
\left(y_{1}, y_{2}, y_{3}\right)=(0, \alpha, \alpha)
$$

Expand a Puiseux zero of A, not of H_{A} (hence of $\left.\mathfrak{p}_{0}\right)$ centered at $(0, \alpha, \alpha)$

$$
\left(y_{1}, y_{2}, y_{3}\right)=\left(Q_{1}(c), Q_{2}(c), Q_{3}(c)\right)=\left(c^{2}, \alpha, \alpha+\rho c^{3}\right)
$$

This step requires a (differential) algebraic extension $\mathscr{L}=\mathscr{G}<\rho>$

$$
C \begin{cases}\rho^{2}-\dot{\varphi}, & (\mathscr{L}) \\ \dot{\alpha}^{2}-\varphi \alpha, & (\mathscr{G}) \\ \left(y_{3}-y_{2}\right)^{2}-\dot{\varphi} y_{1}^{3}, & \left(\mathfrak{p}_{0}, A\right) \\ \ddot{\varphi}-1 . & (\mathscr{F})\end{cases}
$$

It is clear that $\left\{p_{0}\right\} \subset \mathfrak{p}$. Let $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be any zero of p_{0}. By Chapter 0 , Section 16, Corollary 3 to Proposition 11, there exist power series $Q_{1}, \ldots, Q_{n} \in$ $q l[[c]]$ such that each element of p_{0} vanishes at $\left(Q_{1}, \cdots, Q_{n}\right), H_{A}$ does not, and $Q_{j}(0)=\alpha_{j}(1 \leqslant j \leqslant n)$. Now, \mathscr{Z} is universal over some differential field of definition $\mathscr{F}_{0} \subset \mathscr{F}$ of \mathfrak{p} that is also a field of definition of \mathfrak{p}_{0}. Therefore there exists a point $\left(\xi_{1}, \ldots, \xi_{n}\right)$ that is a generic differential specialization of $\left(Q_{1}, \ldots, Q_{n}\right)$ over \mathscr{F}_{0}. It is clear that $\left(\xi_{1}, \ldots, \xi_{n}\right)$ is a zero of A but not of H_{A}, hence is a zero of $\mathfrak{p}=[\mathrm{A}]: H_{\mathrm{A}}^{\infty}$, and that $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a differential specialization of $\left(\xi_{1}, \ldots, \xi_{n}\right)$ over \mathscr{F}_{0}. It follows that $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a zero of p. Therefore (by Section 2, Theorem 1) $p \in\left\{p_{0}\right\}$, whence $p=\left\{p_{0}\right\}$.

The Two Last Steps

If one evaluates a differential polynomial $f \in \mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$ at

$$
\left(y_{1}, y_{2}, y_{3}\right)=\left(Q_{1}(c), Q_{2}(c), Q_{3}(c)\right)=\left(c^{2}, \alpha, \alpha+\rho c^{3}\right)
$$

one gets a differential power series in $\mathscr{L}\{\{c\}\}$

This one is easy to illustrate using a software

If $f \in \mathfrak{p}=[A]: H_{A}^{\infty}$ then it evaluates to zero (all its coefficients are reduced to zero by C)

$$
C \begin{cases}\rho^{2}-\dot{\varphi}, & (\mathscr{L}) \\ \dot{\alpha}^{2}-\varphi \alpha, & (\mathscr{G}) \\ \left(y_{3}-y_{2}\right)^{2}-\dot{\varphi} y_{1}^{3}, & \left(\mathfrak{p}_{0}, A\right) \\ \ddot{\varphi}-1 . & (\mathscr{F})\end{cases}
$$

The Two Last Steps

If one evaluates a differential polynomial $f \in \mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$ at

$$
\left(y_{1}, y_{2}, y_{3}\right)=\left(Q_{1}(c), Q_{2}(c), Q_{3}(c)\right)=\left(c^{2}, \alpha, \alpha+\rho c^{3}\right)
$$

one gets a differential power series in $\mathscr{L}\{\{c\}\}$

This one is not

"A diagram commutes" (if c is a differential indeterminate or an arbitrary contant)

The two following operations yield the same result:

1. Evaluate f at $\left(Q_{1}(c), Q_{2}(c), Q_{3}(c)\right)$ then c at zero
2. Evaluate c at zero then f at $\left(Q_{1}(0), Q_{2}(0), Q_{3}(0)\right)=(0, \alpha, \alpha)$
