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DifferentialAlgebra is a software project hosted at
codeberg.org/francois.boulier/DifferentialAlgebra

It contains the BLAD libraries (C code, embedded in the Maple
DifferentialAlgebra package) and the BMI interface library

A new DifferentialAlgebra package has been developed on top of
Python/sympy (demo at the end of the talk)

There is a gallery directory to show casual visitors what is the point

[Kolchin 1973, Chap. IV, Prop. 10] is proved with elementary arguments.
There are other proofs in algebraic geometry based on the resolution of
singularities
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codeberg.org/francois.boulier/DifferentialAlgebra

Kolchin Irreducibility Theorem

Kolchin (1973) Chap. IV Prop. 10 page 200

Let po be a prime ideal of F|[y1,...,ys] of dimension d. Then the perfect
differential ideal {po} is a prime differential ideal of #{yi,...,yn}

The theorem holds for any number m of derivation operators
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Kolchin Irreducibility Theorem

Kolchin (1973) Chap. IV Prop. 10 page 200

Let po be a prime ideal of F|[y1,...,ys] of dimension d. Then the perfect
differential ideal {po} is a prime differential ideal of #{yi,...,yn}

The theorem holds for any number m of derivation operators

Z differential field of characteristic zero (the Theorem false in char. p > 0)
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Kolchin Irreducibility Theorem

Kolchin (1973) Chap. IV Prop. 10 page 200

Let po be a prime ideal of F|[y1,...,ys] of dimension d. Then the perfect
differential ideal {po} is a prime differential ideal of #{yi,...,yn}

F{y1,...,yn} differential polynomial ring in n differential indeterminates
(= n functions of m independent variables)

Fy, -y ¥n] € F{n1,...,yn} ring of the order zero differential polynomi-
als (~ usual non differential polynomials)

vi—y3 € Zln, .-yl

.y]? _4}/1 6 ﬂ{Yly-u,}/n}\ﬂ[)/lw-w)/n]
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Kolchin Irreducibility Theorem

Kolchin (1973) Chap. IV Prop. 10 page 200

Let po be a prime ideal of F|[y1,...,ys] of dimension d. Then the perfect
differential ideal {po} is a prime differential ideal of #{yi,...,yn}

The Theorem is not as expected as a casual reader would think

- The perfect differential ideal {po} is the radical of the ideal generated
by the elements of pg and their derivatives up to any order

IBERBE The ideal po = (y2 — y7) is prime

The differential ideal {po} contains y> (3y2y1 — 2y 1)

Isit clear that 3y, y1 —2yo 11 € {)/22 —Y13} ?
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Kolchin Irreducibility Theorem

Kolchin (1973) Chap. IV Prop. 10 page 200

Let po be a prime ideal of F|[y1,...,ys] of dimension d. Then the perfect
differential ideal {po} is a prime differential ideal of #{yi,...,yn}

The Theorem is not as expected as a casual reader would think
- Drop the order zero hypothesis and consider y? — 4y
The non differential ideal (y> — 4y) is prime

The perfect differential ideal {y? — 4y} is not prime:

{y* =4y} = {’ -4y, y-2n{y}
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Characteristic Sets

I8 Any prime ideal can be presented by a characteristic set A

‘Example {y? =4y, 7—2} = [A]:HY

where

@ A is the singleton y> — 4y and
@ Ha is the product of the initials (= 1) and separants (= 2y) of A

B8R (A : Hy ={pc Z{y}|3d >0, H{p<c[A]}

Let us prove y — 2 € [A] : HY
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Characteristic Sets

I8 Any prime ideal can be presented by a characteristic set A

‘Example {y? =4y, 7—2} = [A]:HY

where

@ A is the singleton y> — 4y and
@ Ha is the product of the initials (= 1) and separants (= 2y) of A

B8R (A : Hy ={pc Z{y}|3d >0, H{p<c[A]}

Let us prove y — 2 € [A] : HY
We have y2 — 4y € [A] : HY
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Characteristic Sets

I8 Any prime ideal can be presented by a characteristic set A

‘Example {y? =4y, 7—2} = [A]:HY

where

@ A is the singleton y> — 4y and
@ Ha is the product of the initials (= 1) and separants (= 2y) of A

B8R (A : Hy ={pc Z{y}|3d >0, H{p<c[A]}
Let us prove y — 2 € [A] : HY

We have y2 — 4y € [A] : HY
Thus 2y (j — 2) € [A] - HE
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Characteristic Sets

I8 Any prime ideal can be presented by a characteristic set A

‘Example {y? =4y, 7—2} = [A]:HY

where

@ A is the singleton y> — 4y and
@ Ha is the product of the initials (= 1) and separants (= 2y) of A

B8R (A : Hy ={pc Z{y}|3d >0, H{p<c[A]}

Let us prove y — 2 € [A] : HY
We have y2 — 4y € [A] : HY
Thus 2y (j — 2) € [A] : HS
Thus y —2 € [A] : HY
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Summary of the Talk

Let po be a prime ideal of .F#|[y1,...,ya] of dimension d. Then the perfect
differential ideal {po} is a prime differential ideal of .Z{y1,...,yn} J

The proof relies on elementary arguments but it is subtle and misleading.

Some misunderstanding can be avoided by illustrating/restating it through
examples relying on characteristic sets

- Ritt uses characteristic sets both as polynomial system solving
tools and theoretical tools (the Basis Theorem follows from: every set has

a characteristic set)

5/12



A Base Field which is a Differential Field

The base field .7 is a differential field.
It could be the field of fractions of a residue class ring.

The residue class ring of a differential polynomial ring by a prime
differential ideal, presented by a characteristic set

Take .# = Q<> where ¢ defining equation (a characteristic set) is (say)

c{o-1. (£)
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An Order Zero ldeal Over a Differential Field

Let po be a prime ideal of Z[y1,...,yn] ... J

Let us consider a variant of y22 — y13
Take po = (A) : HY where (say)
A= (3—y)—¢¥,
Ha = 2(y3—y0).

The whole construct (non trivial base field + pg) can be presented by a
single characteristic set

(vs—y2)2—¢yi,  (po,A)
Ay @)
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The Second Paragraph of Kolchin's Proof

At this stage, Kolchin has established that the prime ideal pg has an order
zero characteristic set A (so that po = (A) : H®), which defines also a
prime differential ideal p = [A] : HZ® and ...

It is clear that {p,} = p. Let («,,...,x,) be any zero of p,. By Chapter 0,
Section 16, Coerollary 3 to Proposition 11, there exist power series 0, ...,0, €
4 [[c]] such that each element of p, vanishes at (Q,,...,3,), H, does not,
and Q;(0) = «; (1 € < n). Now, % is universal over some differential field
of definition %5 = & of p that is also a field of definition of p,. Therefore
there exists a point (£,,...,&,) that is a generic differential specialization of
(Q,,....,0,) over %#,. Itis clear that (£,,...,£,) is a zero of A but not of H,,
hence is a zero of p = [A]: H.*, and that (a,, ..., ®,) is a differential special-
ization of (£, ...,&,) over . It follows that («,,...,x,) is a zero of p. There-
fore (by Section 2, Theorem 1) p = {ps}, whence p = {po}.
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(a1,...,ap,) is a differential zero

Theorem 1 is a differential Nullstellensatz: if some f vanishes over every
zero of a perfect differential ideal 2 then f € 2

We may restrict («v, ..., ) to a zero with coordinates in a finite
differential field extension of .#

It is clear that {p,} = p. Let («,,...,&,) be any zero of p,. By Chapter 0,
Section 16, Corollary 3 to Proposition 11, there exist power series Q,, ...,0, €
4 [[c]] such that each element of p, vanishes at (Q,,...,Q,), H. does not,
and Q;(0) = a; (1 €< n). Now, % is universal over some differential field
of definition %, = & of p that is also a field of definition of ps. Therefore
there exists a point (£, ..., &) that is a generic differential specialization of
(Q,,-.., 0, over ;. It is clear that (£,, ...,£,) is a zero of A but not of H,,
hence is a zero of p = [A]: H,%, and that (ay, ..., a,) 15 2 differential special-
ization of (¢, ...,&,) over 9%, It follows that («,,...,%,) is 2 zero of p. There-
fore (by Section 2, Theorem 1) p = {ps}, whence p = {p,)}.
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The Zero (ay, ..., ap)

Drop the index, introduce some o € ¥ = .% <a> through some a-defining
equation, stacked over C

&’ —pa, (¥¢)
Ce (ya—y)?—oyi,  (po,A)
o—1. ()
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The Zero (ay, ..., ap)

Drop the index, introduce some o € ¥ = .% <a> through some a-defining
equation, stacked over C

&’ —pa, (¥¢)
Ce (ya—y)?—oyi,  (po,A)
o—1. ()

Pick a zero of po hence of A, which annihilates Hy = 2 (y3 — y») also (the
issue in the proof arises for singular zeros)

(y1,y2,y3) = (0,,0)
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Expand a Puiseux zero of A, not of Ha (hence of pg) centered at (0, o, )

(v1,y2,y3) = (Qi(c), @2(c), &(c)) = (& o, a+pc?)

This step requires a (differential) algebraic extension . = ¥ <p>

:02_(/.37 (g)
0-52_9004) ( )
(s =y =&y, (po, A)
-1 (#)

It is clear that {p,} = p. Let («,,...,a,) be any zero of p,. By Chapter 0,
Section 16, Cerollary 3 to Propesition 11, there exist power series 0, ...,0, €
% [[c]] such that each element of p, vanishes at (Q,,...,0,), H,. does not,
and Q;(0) = «; (1 €< n). Now, % is universal over some differential field
of definition &, = & of p that is also a field of definition of p,. Therefore
there exists a point (&, ..., &) that is a generic differential specialization of
(Q,, .., 0,) over %,. It is clear that ({,,...,&,) is a zero of A but not of H,,
hence is a zero of p = [A]: H,*, and that («,, ..., «,) is a differential special-
ization of (£, ...,&,) over #,. It follows that («,,...,x,) is a zero of p. There-
fore (by Section 2, Theorem 1) p = {ps}, whence p = {p,s}.
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The Two Last Steps

If one evaluates a differential polynomial f € .Z#{y1,...,yn} at
(Y1a)’27)/3) = (Ql(c)an(C)7Q3(C)) = (C27 «, a+pc3)
one gets a differential power series in £ {{c}}

If f € p=[A]: HY then it evaluates to zero (all its coefficients are reduced
to zero by C)

p2_§b7 (g)
C dZ_@a, (g)

(3 =y2)?—¢yi,  (po,A)

¢—1. (F)
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The Two Last Steps

If one evaluates a differential polynomial f € .Z#{y1,...,yn} at

(1 y2,y3) = (Qu(c), Q). Qs(c)) = (2 @ a+pc?)

one gets a differential power series in £ {{c}}

“A diagram commutes” (if ¢ is a differential indeterminate or an arbitrary
contant)

The two following operations yield the same result:

1. Evaluate f at (Q1(c), @2(c), Q3(c)) then c at zero
2. Evaluate c at zero then f at (Q1(0), Q(0), Q3(0)) = (0, @, @)
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