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Context

DifferentialAlgebra is a software project hosted at

codeberg.org/francois.boulier/DifferentialAlgebra

It contains the BLAD libraries (C code, embedded in the Maple
DifferentialAlgebra package) and the BMI interface library

A new DifferentialAlgebra package has been developed on top of
Python/sympy (demo at the end of the talk)

There is a gallery directory to show casual visitors what is the point
New examples welcome!

[Kolchin 1973, Chap. IV, Prop. 10] is proved with elementary arguments.
There are other proofs in algebraic geometry based on the resolution of
singularities
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Kolchin Irreducibility Theorem

Kolchin (1973) Chap. IV Prop. 10 page 200

Let p0 be a prime ideal of F [y1, . . . , yn] of dimension d . Then the perfect
differential ideal {p0} is a prime differential ideal of F{y1, . . . , yn}

The theorem holds for any number m of derivation operators
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Kolchin Irreducibility Theorem

Kolchin (1973) Chap. IV Prop. 10 page 200

Let p0 be a prime ideal of F [y1, . . . , yn] of dimension d . Then the perfect
differential ideal {p0} is a prime differential ideal of F{y1, . . . , yn}

F{y1, . . . , yn} differential polynomial ring in n differential indeterminates
(= n functions of m independent variables)

F [y1, . . . , yn] ⊂ F{y1, . . . , yn} ring of the order zero differential polynomi-
als (' usual non differential polynomials)

y21 − y32 ∈ F [y1, . . . , yn]

ẏ21 − 4 y1 ∈ F{y1, . . . , yn} \F [y1, . . . , yn]
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Kolchin Irreducibility Theorem

Kolchin (1973) Chap. IV Prop. 10 page 200

Let p0 be a prime ideal of F [y1, . . . , yn] of dimension d . Then the perfect
differential ideal {p0} is a prime differential ideal of F{y1, . . . , yn}

The Theorem is not as expected as a casual reader would think

Def The perfect differential ideal {p0} is the radical of the ideal generated
by the elements of p0 and their derivatives up to any order

Example The ideal p0 = (y22 − y31 ) is prime

The differential ideal {p0} contains y2 (3 y2 ẏ1 − 2 ẏ2 y1)

Is it clear that 3 y2 ẏ1 − 2 ẏ2 y1 ∈ {y22 − y31 } ?
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Kolchin Irreducibility Theorem

Kolchin (1973) Chap. IV Prop. 10 page 200

Let p0 be a prime ideal of F [y1, . . . , yn] of dimension d . Then the perfect
differential ideal {p0} is a prime differential ideal of F{y1, . . . , yn}

The Theorem is not as expected as a casual reader would think

Example Drop the order zero hypothesis and consider ẏ2 − 4 y

The non differential ideal (ẏ2 − 4 y) is prime

The perfect differential ideal {ẏ2 − 4 y} is not prime:

{ẏ2 − 4 y} = {ẏ2 − 4 y , ÿ − 2} ∩ {y}
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Characteristic Sets

Fact Any prime ideal can be presented by a characteristic set A

Example {ẏ2 − 4 y , ÿ − 2} = [A] : H∞
A

where

A is the singleton ẏ2 − 4 y and

HA is the product of the initials (= 1) and separants (= 2 ẏ) of A

Def [A] : H∞
A = {p ∈ F{y} | ∃ d ≥ 0, Hd

A p ∈ [A]}

Let us prove ÿ − 2 ∈ [A] : H∞
A

We have ẏ2 − 4 y ∈ [A] : H∞
A

Thus 2 ẏ (ÿ − 2) ∈ [A] : H∞
A

Thus ÿ − 2 ∈ [A] : H∞
A
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Summary of the Talk

Let p0 be a prime ideal of F [y1, . . . , yn] of dimension d . Then the perfect
differential ideal {p0} is a prime differential ideal of F{y1, . . . , yn}

The proof relies on elementary arguments but it is subtle and misleading.

Some misunderstanding can be avoided by illustrating/restating it through
examples relying on characteristic sets

Remark Ritt uses characteristic sets both as polynomial system solving
tools and theoretical tools (the Basis Theorem follows from: every set has
a characteristic set)
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A Base Field which is a Differential Field

The base field F is a differential field.

It could be the field of fractions of a residue class ring.

The residue class ring of a differential polynomial ring by a prime
differential ideal, presented by a characteristic set

Take F = Q<ϕ> where ϕ defining equation (a characteristic set) is (say)

C
{
ϕ̈− 1 . (F )
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An Order Zero Ideal Over a Differential Field

Let p0 be a prime ideal of F [y1, . . . , yn] . . .

Let us consider a variant of y22 − y31

Take p0 = (A) : H∞
A where (say)

A = (y3 − y2)2 − ϕ̇ y31 ,

HA = 2 (y3 − y2) .

The whole construct (non trivial base field + p0) can be presented by a
single characteristic set

C

{
(y3 − y2)2 − ϕ̇ y31 , (p0,A)
ϕ̈− 1 . (F )
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The Second Paragraph of Kolchin’s Proof

At this stage, Kolchin has established that the prime ideal p0 has an order
zero characteristic set A (so that p0 = (A) : H∞

A ), which defines also a
prime differential ideal p = [A] : H∞

A and . . .
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(α1, . . . , αn) is a differential zero

Theorem 1 is a differential Nullstellensatz: if some f vanishes over every
zero of a perfect differential ideal A then f ∈ A

We may restrict (α1, . . . , αn) to a zero with coordinates in a finite
differential field extension of F
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The Zero (α1, . . . , αn)

Drop the index, introduce some α ∈ G = F<α> through some α-defining
equation, stacked over C

C


α̇2 − ϕα , (G )
(y3 − y2)2 − ϕ̇ y31 , (p0,A)
ϕ̈− 1 . (F )

Pick a zero of p0 hence of A, which annihilates HA = 2 (y3 − y2) also (the
issue in the proof arises for singular zeros)

(y1, y2, y3) = (0, α, α)
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Expand a Puiseux zero of A, not of HA (hence of p0) centered at (0, α, α)

(y1, y2, y3) = (Q1(c),Q2(c),Q3(c)) = (c2, α, α + ρ c3)

This step requires a (differential) algebraic extension L = G<ρ>

C


ρ2 − ϕ̇ , (L )
α̇2 − ϕα , (G )
(y3 − y2)2 − ϕ̇ y31 , (p0,A)
ϕ̈− 1 . (F )
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The Two Last Steps

If one evaluates a differential polynomial f ∈ F{y1, . . . , yn} at

(y1, y2, y3) = (Q1(c),Q2(c),Q3(c)) = (c2, α, α + ρ c3)

one gets a differential power series in L {{c}}

This one is easy to illustrate using a software

If f ∈ p = [A] : H∞
A then it evaluates to zero (all its coefficients are reduced

to zero by C )

C


ρ2 − ϕ̇ , (L )
α̇2 − ϕα , (G )
(y3 − y2)2 − ϕ̇ y31 , (p0,A)
ϕ̈− 1 . (F )

12 / 12



The Two Last Steps

If one evaluates a differential polynomial f ∈ F{y1, . . . , yn} at

(y1, y2, y3) = (Q1(c),Q2(c),Q3(c)) = (c2, α, α + ρ c3)

one gets a differential power series in L {{c}}

This one is not

“A diagram commutes” (if c is a differential indeterminate or an arbitrary
contant)

The two following operations yield the same result:
1. Evaluate f at (Q1(c),Q2(c),Q3(c)) then c at zero
2. Evaluate c at zero then f at (Q1(0),Q2(0),Q3(0)) = (0, α, α)
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