Identifiability of Linear Compartmental Tree Models

Cash Bortner

CSU-Stanislaus
cbortner@csustan.edu

DART XI

Queen Mary University of London
$6 / 7 / 2023$ or $7 / 6 / 2023$

Collaborators

Dr. Elizabeth Gross
U. of Hawai'i at Mānoa

Dr. Nicolette Meshkat Santa Clara University

Dr. Anne Shiu
Texas A\&M University

Dr. Seth Sullivant North Carolina State U.

Motivating Example

Linear Compartmental Model

$$
\begin{aligned}
\mathcal{M} & =(G, \text { In }, \text { Out }, \text { Leak }) \\
& =\left(\text { Cat }_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

Motivating Example

Linear Compartmental Model

$$
\begin{aligned}
\mathcal{M} & =(G, \ln , \text { Out, Leak }) \\
& =\left(\text { Cat }_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

Directed Graph: $G=\mathrm{Cat}_{3}$

Motivating Example

Linear Compartmental Model

$$
\begin{aligned}
\mathcal{M} & =(G, \text { In }, \text { Out }, \text { Leak }) \\
& =\left(\text { Cat }_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

Input Compartment: In $=\{3\}$

Motivating Example

Linear Compartmental Model

$$
\begin{aligned}
\mathcal{M} & =(G, \ln , \text { Out, Leak }) \\
& =\left(\text { Cat }_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

Measured Compartment: Out $=\{1\}$

Motivating Example

Linear Compartmental Model

$$
\begin{aligned}
\mathcal{M} & =(G, \ln , \text { Out, Leak }) \\
& =\left(\text { Cat }_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

"Output" Compartment: Out $=\{1\}$

Motivating Example

Linear Compartmental Model

$$
\begin{aligned}
\mathcal{M} & =(G, \ln , \text { Out }, \text { Leak }) \\
& =\left(\text { Cat }_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

Leak Compartment: Leak $=\{3\}$

Motivating Example

Linear Compartmental Model

$$
\begin{aligned}
\mathcal{M} & =(G, \text { In }, \text { Out }, \text { Leak }) \\
& =\left(\text { Cat }_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

Motivating Example

Linear Compartmental Model

$$
\begin{aligned}
\mathcal{M} & =(G, \text { In, Out, Leak }) \\
& =\left(\text { Cat }_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

Motivating Question: Identifiability

Given information about the input and output compartment[s], can we recover all flow rate parameters?

Motivating Example

Linear Compartmental Model

$$
\begin{aligned}
\mathcal{M} & =(G, \text { In, Out, Leak }) \\
& =\left(\text { Cat }_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

Motivating Question: Identifiability

Given information about the input and output compartment[s], can we identify all flow rate parameters?

Compartmental Models in the Wild

- SIR Model for spread of a virus in Epidemiology (non-linear)
- SIV Model for vaccine efficiency in Epidemiology
- Modeling Pharmacokinetics for absorption, distribution, metabolism, and excretion in the blood
- Modeling different biological

systems

Motivating Example

$$
\begin{aligned}
\mathcal{M} & =(G, \text { In, Out, Leak }) \\
& =\left(\operatorname{Cat}_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

Motivating Example

$$
\begin{aligned}
\mathcal{M} & =(G, \text { In, Out }, \text { Leak }) \\
& =\left(\operatorname{Cat}_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

ODEs in terms of concentrations $x_{i}(t)$, input $u_{3}(t)$, and output $y_{1}(t)$:

$$
\dot{x_{1}}=-a_{21} x_{1}(t) \quad+a_{12} x_{2}(t)
$$

Motivating Example

$$
\begin{aligned}
\mathcal{M} & =(G, \text { In, Out }, \text { Leak }) \\
& =\left(\operatorname{Cat}_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

ODEs in terms of concentrations $x_{i}(t)$, input $u_{3}(t)$, and output $y_{1}(t)$:

$$
\begin{array}{lr}
\dot{x_{1}}=-a_{21} x_{1}(t) \quad+a_{12} x_{2}(t) & \\
\dot{x_{2}}=a_{21} x_{1}(t)-\left(a_{12}+a_{32}\right) x_{2}(t) & +a_{23} x_{3}(t)
\end{array}
$$

Motivating Example

$$
\begin{aligned}
\mathcal{M} & =(G, \text { In, Out, Leak }) \\
& =\left(\operatorname{Cat}_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

ODEs in terms of concentrations $x_{i}(t)$, input $u_{3}(t)$, and output $y_{1}(t)$:

$$
\begin{array}{lrl}
\dot{x_{1}}= & -a_{21} x_{1}(t) & +a_{12} x_{2}(t) \\
\dot{x_{2}}= & a_{21} x_{1}(t)-\left(a_{12}+a_{32}\right) x_{2}(t) & +a_{23} x_{3}(t) \\
\dot{x_{3}}= & a_{32} x_{2}(t)-\left(a_{03}+a_{23}\right) x_{3}(t)+u_{3}(t)
\end{array}
$$

Motivating Example

$$
\begin{aligned}
\mathcal{M} & =(G, \text { In, Out, Leak }) \\
& =\left(\text { Cat }_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

ODEs in terms of concentrations $x_{i}(t)$, input $u_{3}(t)$, and output $y_{1}(t)$:

$$
\begin{array}{lrl}
\dot{x_{1}}= & -a_{21} x_{1}(t) & +a_{12} x_{2}(t) \\
\dot{x_{2}}= & a_{21} x_{1}(t)-\left(a_{12}+a_{32}\right) x_{2}(t) & +a_{23} x_{3}(t) \\
\dot{x_{3}}= & a_{32} x_{2}(t)-\left(a_{03}+a_{23}\right) x_{3}(t)+u_{3}(t)
\end{array}
$$

with

$$
y_{1}(t)=x_{1}(t)
$$

Motivating Example

$$
\begin{aligned}
\mathcal{M} & =(G, \operatorname{In}, \text { Out, Leak }) \\
& =\left(\operatorname{Cat}_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

ODEs in terms of concentrations $x_{i}(t)$, input $u_{3}(t)$, and output $y_{1}(t)$:

$$
\left(\begin{array}{l}
\dot{x_{1}} \\
\dot{x_{2}} \\
\dot{x_{3}}
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
-a_{21} & a_{12} & 0 \\
a_{21} & -a_{12}-a_{32} & a_{23} \\
0 & a_{32} & -a_{03}-a_{23}
\end{array}\right)}_{\text {compartmental matrix } \mathrm{A}}\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
u_{3}(t)
\end{array}\right)
$$

with

$$
y_{1}(t)=x_{1}(t)
$$

Motivating Example

$$
\begin{aligned}
\mathcal{M} & =(G, \text { In, Out, Leak }) \\
& =\left(\text { Cat }_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

Goal: Identify the parameters $a_{j i}$ from the measurable variables.

$$
\left(\begin{array}{l}
\dot{x_{1}} \\
\dot{x_{2}} \\
\dot{x}_{3}
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
-a_{21} & a_{12} & 0 \\
a_{21} & -a_{12}-a_{32} & a_{23} \\
0 & a_{32} & -a_{03}-a_{23}
\end{array}\right)}_{\text {compartmental matrix } \mathrm{A}}\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
u_{3}(t)
\end{array}\right)
$$

with

$$
y_{1}(t)=x_{1}(t)
$$

Motivating Example

Goal: Identify the parameters $a_{j i}$ from the measurable variables.

$$
\left(\begin{array}{l}
\dot{x_{1}} \\
\dot{x_{2}} \\
\dot{x_{3}}
\end{array}\right)=\left(\begin{array}{ccc}
-a_{21} & a_{12} & 0 \\
a_{21} & -a_{12}-a_{32} & a_{23} \\
0 & a_{32} & -a_{03}-a_{23}
\end{array}\right)\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
u_{3}(t)
\end{array}\right)
$$

with

$$
y_{1}(t)=x_{1}(t)
$$

Motivating Example

Goal: Identify the parameters $a_{j i}$ from the measurable variables.

$$
\left(\begin{array}{ccc}
\partial_{t} & 0 & 0 \\
0 & \partial_{t} & 0 \\
0 & 0 & \partial_{t}
\end{array}\right)\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)=\left(\begin{array}{ccc}
-a_{21} & a_{12} & 0 \\
a_{21} & -a_{12}-a_{32} & a_{23} \\
0 & a_{32} & -a_{03}-a_{23}
\end{array}\right)\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
u_{3}(t)
\end{array}\right)
$$

with

$$
y_{1}(t)=x_{1}(t)
$$

Motivating Example

Goal: Identify the parameters $a_{j i}$ from the measurable variables.

$$
\left(\begin{array}{ccc}
\partial_{t} & 0 & 0 \\
0 & \partial_{t} & 0 \\
0 & 0 & \partial_{t}
\end{array}\right)\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)-\left(\begin{array}{ccc}
-a_{21} & a_{12} & 0 \\
a_{21} & -a_{12}-a_{32} & a_{23} \\
0 & a_{32} & -a_{03}-a_{23}
\end{array}\right)\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
u_{3}(t)
\end{array}\right)
$$

with

$$
y_{1}(t)=x_{1}(t)
$$

Motivating Example

Goal: Identify the parameters $a_{j i}$ from the measurable variables.

$$
\left(\left(\begin{array}{ccc}
\partial_{t} & 0 & 0 \\
0 & \partial_{t} & 0 \\
0 & 0 & \partial_{t}
\end{array}\right)-\left(\begin{array}{ccc}
-a_{21} & a_{12} & 0 \\
a_{21} & -a_{12}-a_{32} & a_{23} \\
0 & a_{32} & -a_{03}-a_{23}
\end{array}\right)\right)\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
u_{3}(t)
\end{array}\right)
$$

with

$$
y_{1}(t)=x_{1}(t)
$$

Motivating Example

Goal: Identify the parameters $a_{j i}$ from the measurable variables.

$$
\left(\begin{array}{ccc}
\partial_{t}+a_{21} & -a_{12} & 0 \\
-a_{21} & \partial_{t}+a_{12}+a_{32} & -a_{23} \\
0 & -a_{32} & \partial_{t}+a_{03}+a_{23}
\end{array}\right)\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
u_{3}(t)
\end{array}\right)
$$

with

$$
y_{1}(t)=x_{1}(t)
$$

Motivating Example

Goal: Identify the parameters $a_{j i}$ from the measurable variables.

$$
\left(\begin{array}{ccc}
\partial_{t}+a_{21} & -a_{12} & 0 \\
-a_{21} & \partial_{t}+a_{12}+a_{32} & -a_{23} \\
0 & -a_{32} & \partial_{t}+a_{03}+a_{23}
\end{array}\right)\left(\begin{array}{l}
y_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
u_{3}(t)
\end{array}\right)
$$

with

$$
y_{1}(t)=x_{1}(t)
$$

Motivating Example

Goal: Identify the parameters $a_{j i}$ from the measurable variables.

$$
\left(\begin{array}{ccc}
\partial_{t}+a_{21} & -a_{12} & 0 \\
-a_{21} & \partial_{t}+a_{12}+a_{32} & -a_{23} \\
0 & -a_{32} & \partial_{t}+a_{03}+a_{23}
\end{array}\right)\left(\begin{array}{l}
y_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
u_{3}(t)
\end{array}\right)
$$

via Cramer's Rule:

$$
\begin{array}{r}
\operatorname{det}\left(\begin{array}{ccc}
\partial_{t}+a_{21} & -a_{12} & 0 \\
-a_{21} & \partial_{t}+a_{12}+a_{32} & -a_{23} \\
0 & -a_{32} & \partial_{t}+a_{03}+a_{23}
\end{array}\right) y_{1}(t) \\
\\
=\operatorname{det}\left(\begin{array}{ccc}
0 & -a_{12} & 0 \\
0 & \partial_{t}+a_{12}+a_{32} & -a_{23} \\
u_{3}(t) & -a_{32} & \partial_{t}+a_{03}+a_{23}
\end{array}\right)
\end{array}
$$

Motivating Example

Goal: Identify the parameters $a_{j i}$ from the measurable variables.

$$
\left(\begin{array}{ccc}
\partial_{t}+a_{21} & -a_{12} & 0 \\
-a_{21} & \partial_{t}+a_{12}+a_{32} & -a_{23} \\
0 & -a_{32} & \partial_{t}+a_{03}+a_{23}
\end{array}\right)\left(\begin{array}{l}
y_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
u_{3}(t)
\end{array}\right)
$$

via Cramer's Rule:

$$
\begin{array}{r}
\operatorname{det}\left(\begin{array}{ccc}
\partial_{t}+a_{21} & -a_{12} & 0 \\
-a_{21} & \partial_{t}+a_{12}+a_{32} & -a_{23} \\
0 & -a_{32} & \partial_{t}+a_{03}+a_{23}
\end{array}\right) y_{1}(t) \\
\\
=\operatorname{det}\left(\begin{array}{cc}
-a_{12} & 0 \\
\partial_{t}+a_{12}+a_{32} & -a_{23}
\end{array}\right) u_{3}(t)
\end{array}
$$

Motivating Example

$$
\begin{aligned}
\mathcal{M} & =(G, \text { In, Out, Leak }) \\
& =\left(\text { Cat }_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

Goal: Identify the parameters $\mathrm{a}_{j i}$ from the measurable variables.

$$
\operatorname{det}\left(\partial_{t} I-A\right) y_{1}=\underbrace{\operatorname{det}\left(\partial_{t} I-A\right)^{(3,1)}}_{\text {remove row } 3 \text { and col } 1} u_{3}
$$

by Cramer's Rule and substitution.

Motivating Example: Input/Output Equation

$$
\begin{aligned}
\mathcal{M} & =(G, \text { In, Out, Leak }) \\
& =\left(\text { Cat }_{3},\{3\},\{1\},\{3\}\right) .
\end{aligned}
$$

Via a substitution and application of Cramer's Rule:

$$
\begin{aligned}
& y_{1}^{(3)}+\left(a_{03}+a_{12}+a_{21}+a_{23}+a_{32}\right) \ddot{y}_{1}+\left(a_{03} a_{12}+a_{03} a_{21}\right. \\
& \left.\quad+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}\right) \dot{y_{1}}+\left(a_{03} a_{21} a_{32}\right) y_{1}=\left(a_{12} a_{23}\right) u_{3} .
\end{aligned}
$$

an ODE in only the measurable variables and the parameters:
Input/Output Equation

Goal: Identify parameters $a_{j i}$ from the measurable variables.

Identifiability Analysis: Structural vs. Practical

Overview

We want to recover (identify) parameters of ODE models from measured variables.

Identifiability Analysis: Structural vs. Practical

Overview

We want to recover (identify) parameters of ODE models from measured variables.

Structural vs. Practical

Identifiability Analysis: Structural vs. Practical

Overview

We want to recover (identify) parameters of ODE models from measured variables.

Structural vs. Practical

- structural identifiability analysis, is done a priori, assumes perfect conditions, and does not provide numerical parameter estimates

Identifiability Analysis: Structural vs. Practical

Overview

We want to recover (identify) parameters of ODE models from measured variables.

Structural vs. Practical

- structural identifiability analysis, is done a priori, assumes perfect conditions, and does not provide numerical parameter estimates
- practical identifiability analysis, is done a posteriori, assumes some error exists, and generally computes parameter estimates from measured data

Identifiability Analysis: Structural vs. Practical

Overview

We want to recover (identify) parameters of ODE models from measured variables.

Structural vs. Practical

- structural identifiability analysis, is done a priori, assumes perfect conditions, and does not provide numerical parameter estimates
- practical identifiability analysis, is done a posteriori, assumes some error exists, and generally computes parameter estimates from measured data

Remark

Structural identifiability is a necessary condition for practical identifiability.

Identifiability Analysis: Structural vs. Practical

Overview

We want to recover (identify) parameters of ODE models from measured variables.

Structural vs. Practical

- structural identifiability analysis, is done a priori, assumes perfect conditions, and does not provide numerical parameter estimates
- practical identifiability analysis, is done a posteriori, assumes some error exists, and generally computes parameter estimates from measured data

Remark

Structural identifiability is a necessary condition for practical identifiability.

Structural Identifiability Analysis: A two part problem

Structural Identifiability via the input-output equation

We consider structural identifiability as a two-step problem:

1. Find an input/output equation of the ODE system in terms of measurable variables
2. Determine the injectivity of the coefficient map defined by the input/output equation

Structural Identifiability Analysis: A two part problem

Structural Identifiability via the input-output equation

We consider structural identifiability as a two-step problem:

1. Find an input/output equation of the ODE system in terms of measurable variables
2. Determine the injectivity of the coefficient map defined by the input/output equation

Goal

We want to classify structural identifiability

Structural Identifiability Analysis: A two part problem

Structural Identifiability via the input-output equation

We consider structural identifiability as a two-step problem:

1. Find an input/output equation of the ODE system in terms of measurable variables
2. Determine the injectivity of the coefficient map defined by the input/output equation

Goal

We want to classify structural identifiability by the underlying graph structure.

Novel Input-Output Equation Characterization

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

The coefficients of the input-output equation of a LCM (G, In, Out, Leak) can be generated by incoming forests on graphs related to G.

Novel Input-Output Equation Characterization

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

The coefficients of the input-output equation of a LCM (G, In, Out, Leak) can be generated by incoming forests on graphs related to G.

Definitions

A directed graph H is called an incoming forest if

- no vertex has more than one outgoing edge, and
- its underlying undirected graph is a forest

Example

The set of incoming forests with 3 edges on $\widetilde{G}: \mathcal{F}_{3}(\widetilde{G})=\{\{1 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 0\}\}$

$$
\text { (1) } \stackrel{a_{12}}{\stackrel{1}{a_{21}}}(2) \stackrel{a_{23}}{\stackrel{a_{32}}{\leftrightarrows}}(3) \xrightarrow{a_{03}}(0)
$$

Novel Input-Output Equation Characterization

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

The coefficients of the input-output equation of a LCM (G, In, Out, Leak) can be generated by incoming forests on graphs related to G.

Definitions

A directed graph H is called an incoming forest if

- no vertex has more than one outgoing edge, and
- its underlying undirected graph is a forest

Example

The set of incoming forests with 3 edges on $\widetilde{G}: \mathcal{F}_{3}(\widetilde{G})=\{\{1 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 0\}\}$

$$
\text { (1) } \stackrel{a_{12}}{\stackrel{1}{a_{21}}}(2) \stackrel{a_{23}}{\stackrel{a_{32}}{\leftrightarrows}}(3) \xrightarrow{a_{03}}(0)
$$

Novel Input-Output Equation Characterization

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

The coefficients of the input-output equation of a LCM (G, In, Out, Leak) can be generated by incoming forests on graphs related to G.

Definitions

A directed graph H is called an incoming forest if

- no vertex has more than one outgoing edge, and
- its underlying undirected graph is a forest

Example

The set of incoming forests with 3 edges on $\widetilde{G}: \mathcal{F}_{3}(\widetilde{G})=\{\{1 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 0\}\}$

Novel Input-Output Equation Characterization

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

The coefficients of the input-output equation of a LCM (G, In, Out, Leak) can be generated by incoming forests on graphs related to G.

Definitions

A directed graph H is called an incoming forest if

- no vertex has more than one outgoing edge, and
- its underlying undirected graph is a forest

Example

The set of incoming forests with 3 edges on $\widetilde{G}: \mathcal{F}_{3}(\widetilde{G})=\{\{1 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 0\}\}$

$$
\text { (1) } \stackrel{a_{12}}{\stackrel{1}{a_{21}}}(2) \stackrel{a_{23}}{\stackrel{a_{32}}{\leftrightarrows}}(3) \xrightarrow{a_{03}}(0)
$$

Novel Input-Output Equation Characterization

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

The coefficients of the input-output equation of a LCM (G, In, Out, Leak) can be generated by incoming forests on graphs related to G.

Definitions

A directed graph H is called an incoming forest if

- no vertex has more than one outgoing edge, and
- its underlying undirected graph is a forest

Example

The set of incoming forests with 3 edges on $\widetilde{G}: \mathcal{F}_{3}(\widetilde{G})=\{\{1 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 0\}\}$

$$
\text { (1) } \underset{a_{21}}{\stackrel{\partial y_{2}}{\rightarrow}}(2) \stackrel{a_{23}}{\underset{a_{32}}{\leftrightarrows}}(3) \xrightarrow{a_{03}}(0)
$$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:
The $k^{\text {th }}$ coefficient of LHS of the

$$
\underset{d}{1} \underset{a_{21}}{a_{12}}(2) \underset{a_{32}}{\stackrel{a_{23}}{\leftrightarrows}}(3) \stackrel{a_{03}}{\leftrightarrows}(0)
$$ i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 1 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{03}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{03} a_{21} a_{32}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:

The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 1 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{03}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{03} a_{21} a_{32}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:

The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 1 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{03}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{03} a_{21} a_{32}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\tilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 1 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{03}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{03} a_{21} a_{32}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:

The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\tilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 1 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{03}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{03} a_{21} a_{32}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\tilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 1 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{03}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{03} a_{21} a_{32}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:
The $k^{\text {th }}$ coefficient of LHS of the

$$
\underset{d}{1} \underset{a_{21}}{a_{12}}(2) \underset{a_{32}}{\stackrel{a_{23}}{\leftrightarrows}}(3) \stackrel{a_{03}}{\leftrightarrows}(0)
$$ i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 2 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{03}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{03} a_{21} a_{32}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:

The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 2 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{03}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{03} a_{21} a_{32}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:

The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 2 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{03}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{03} a_{21} a_{32}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:

The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 2 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{03}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{03} a_{21} a_{32}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:

The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\tilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 2 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{03}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{03} a_{21} a_{32}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:

The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 2 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{03}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{03} a_{21} a_{32}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\tilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 2 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{03}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{03} a_{21} a_{32}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:
The $k^{\text {th }}$ coefficient of LHS of the

$$
\underset{d_{0}}{\stackrel{a_{12}}{\leftrightarrows}}(2) \underset{a_{32}}{\stackrel{a_{23}}{\leftrightarrows}} 3_{\uparrow}^{3} \stackrel{a_{03}}{\leftrightarrows}(0)
$$ i-o equation is:

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\widetilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 3 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{03}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{03} a_{21} a_{32}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:
The $k^{\text {th }}$ coefficient of LHS of the i-o equation is:

$$
\text { (1) } \underset{a_{21}}{a_{12}}(2) \underset{a_{32}}{\rightarrow} \underset{\substack{a_{23}}}{\rightarrow} \xrightarrow[\widetilde{G}]{a_{0}}
$$

$$
c_{k}=\sum_{F \in \mathcal{F}_{3-k}(\tilde{G})} \pi_{F}
$$

LHS coefficients: Incoming forests with 3 edge

Derivative	Coefficient
$y_{1}^{(3)}$	1
$y_{1}^{(2)}$	$a_{03}+a_{12}+a_{21}+a_{23}+a_{32}$
$y_{1}^{(1)}$	$a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}$
$y_{1}^{(0)}$	$a_{03} a_{21} a_{32}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:
The $k^{\text {th }}$ coefficient of RHS of the
 i i-o equation is:

$$
d_{k}=\sum_{F \in \mathcal{F}_{3-k-1}^{3,1}\left(\tilde{G}_{1}^{*}\right)} \pi_{F}
$$

RHS coefficients:

Derivative	Coefficient
$u_{3}^{(0)}$	

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:
The $k^{\text {th }}$ coefficient of RHS of the i-o equation is:

$$
d_{k}=\sum_{F \in \mathcal{F}_{3-k-1}^{3,1}\left(\tilde{G}_{1}^{*}\right)} \pi_{F}
$$

RHS coefficients: Incoming forests with 2 edges AND a path from 3 to 1

Derivative	Coefficient
$u_{3}^{(0)}$	

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$:
The $k^{\text {th }}$ coefficient of RHS of the i-o equation is:

$$
d_{k}=\sum_{F \in \mathcal{F}_{3-k-1}^{3,1}\left(\tilde{G}_{1}^{*}\right)} \pi_{F}
$$

RHS coefficients: Incoming forests with 2 edges AND a path from 3 to 1

Derivative	Coefficient
$u_{3}^{(0)}$	$a_{12} a_{23}$

Number of Coefficients

Corollary (\$, Gross, Meshkat, Shiu, Sullivant [1])

Consider $\mathcal{M}=(G,\{i n\},\{o u t\}$, Leak $)$ where G is strongly connected and $\left|V_{G}\right|=n$. Then the number of non-trivial coefficients in the input/output equation is:
\# on LHS $=\left\{\begin{array}{ll}n & \text { if } \mid \text { Leak } \mid \neq 0 \\ n-1 & \text { if } \mid \text { Leak } \mid=0\end{array}, \quad \#\right.$ on RHS $= \begin{cases}n-1 & \text { if in }=\text { out } \\ n-\operatorname{dist}(\text { in }, \text { out }) & \text { if in } \neq \text { out }\end{cases}$

Number of Coefficients

Corollary (\$, Gross, Meshkat, Shiu, Sullivant [1])

Consider $\mathcal{M}=(G,\{i n\},\{$ out $\}$, Leak $)$ where G is strongly connected and $\left|V_{G}\right|=n$. Then the number of non-trivial coefficients in the input/output equation is:
\# on LHS $=\left\{\begin{array}{ll}n & \text { if } \mid \text { Leak } \mid \neq 0 \\ n-1 & \text { if } \mid \text { Leak } \mid=0\end{array}, \quad\right.$ \# on RHS $= \begin{cases}n-1 & \text { if in }=\text { out } \\ n-\operatorname{dist(in,~out)~} & \text { if in } \neq \text { out. } .\end{cases}$

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$, the input/output equation is:

$$
\begin{aligned}
& y_{1}^{(3)}+\left(a_{03}+a_{12}+a_{21}+a_{23}+a_{32}\right) y_{1}^{\prime \prime}+\left(a_{03} a_{12}+a_{03} a_{21}\right. \\
& \left.\quad a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}\right) y_{1}^{\prime}+\left(a_{03} a_{21} a_{32}\right) y_{1}=\left(a_{12} a_{23}\right) u_{3} .
\end{aligned}
$$

$$
\begin{aligned}
& \# \text { on } \mathrm{LHS}=3(\text { since } \mid \text { Leak } \mid=1) \\
& \# \text { on } \mathrm{RHS}=3-\underbrace{\operatorname{dist}(3,1)}_{2}=1
\end{aligned}
$$

Example

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$, the input/output equation is:

$$
\begin{aligned}
& y_{1}^{(3)}+\left(a_{03}+a_{12}+a_{21}+a_{23}+a_{32}\right) \ddot{y_{1}}+\left(a_{03} a_{12}+a_{03} a_{21}\right. \\
& \left.\quad+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}\right) \dot{y_{1}}+\left(a_{03} a_{21} a_{32}\right) y_{1}=\left(a_{12} a_{23}\right) u_{3} .
\end{aligned}
$$

The coefficient map corresponding to \mathcal{M} is:

$$
\begin{aligned}
& \phi_{\mathcal{M}}: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4} \\
& \left(\begin{array}{c}
a_{03} \\
a_{12} \\
a_{21} \\
a_{23} \\
a_{32}
\end{array}\right) \mapsto\left(\begin{array}{c}
a_{03}+a_{12}+a_{21}+a_{23}+a_{32} \\
a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32} \\
a_{03} a_{21} a_{32} \\
a_{12} a_{23}
\end{array}\right)
\end{aligned}
$$

Identifiability

Definition*

A model (G, In, Out, Leak) with coefficient map ϕ is

- locally identifiable (identifiable) if, outside a set of measure zero, every point in $\mathbb{R}^{\left|E_{G}\right|+\mid \text { Leak } \mid}$ has an open neighborhood U for which the restriction $\phi \mid U: U \rightarrow \mathbb{R}^{m}$ is one-to-one; and
- unidentifiable if c is generically infinite-to-one.

Identifiability

Definition*

A model (G, In, Out, Leak) with coefficient map ϕ is

- locally identifiable (identifiable) if, outside a set of measure zero, every point in $\mathbb{R}^{\left|E_{G}\right|+\mid \text { Leak } \mid}$ has an open neighborhood U for which the restriction $\phi \mid U: U \rightarrow \mathbb{R}^{m}$ is one-to-one; and
- unidentifiable if c is generically infinite-to-one.

Proposition (Sufficient condition for unidentifiability)

A model $\mathcal{M}=(G$, In, Out, Leak $)$ is unidentifiable if

$$
\underbrace{\# \text { parameters }}_{\left|E_{G}\right|+\mid \text { Leak } \mid}>\# \text { coefficients. }
$$

Example

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$, the input/output equation is:

$$
\begin{aligned}
& y_{1}^{(3)}+\left(a_{03}+a_{12}+a_{21}+a_{23}+a_{32}\right) \ddot{y}_{1}+\left(a_{03} a_{12}+a_{03} a_{21}\right. \\
& \left.\quad+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}\right) \dot{y_{1}}+\left(a_{03} a_{21} a_{32}\right) y_{1}=\left(a_{12} a_{23}\right) u_{3} .
\end{aligned}
$$

The coefficient map corresponding to \mathcal{M} is:

$$
\begin{aligned}
& \phi_{\mathcal{M}}: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4} \\
& \left(\begin{array}{c}
a_{03} \\
a_{12} \\
a_{21} \\
a_{23} \\
a_{32}
\end{array}\right) \mapsto\left(\begin{array}{c}
a_{03}+a_{12}+a_{21}+a_{23}+a_{32} \\
a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32} \\
a_{03} a_{21} a_{32} \\
a_{12} a_{23}
\end{array}\right)
\end{aligned}
$$

Example

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$, the input/output equation is:

$$
\begin{aligned}
& y_{1}^{(3)}+\left(a_{03}+a_{12}+a_{21}+a_{23}+a_{32}\right) \ddot{y_{1}}+\left(a_{03} a_{12}+a_{03} a_{21}\right. \\
& \left.\quad+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}\right) \dot{y_{1}}+\left(a_{03} a_{21} a_{32}\right) y_{1}=\left(a_{12} a_{23}\right) u_{3} .
\end{aligned}
$$

The coefficient map corresponding to \mathcal{M} is:
$\phi_{\mathcal{M}}: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4} \quad \mathcal{M}$ is UNIDENTIFIABLE

$$
\left(\begin{array}{c}
a_{03} \\
a_{12} \\
a_{21} \\
a_{23} \\
a_{32}
\end{array}\right) \mapsto\left(\begin{array}{c}
a_{03}+a_{12}+a_{21}+a_{23}+a_{32} \\
a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32} \\
a_{03} a_{21} a_{32} \\
a_{12} a_{23}
\end{array}\right)
$$

Unidentifiability

Corollary (\$, Gross, Meshkat, Shiu, Sullivant [1])

Consider $\mathcal{M}=(G,\{$ in $\},\{$ out $\}$, Leak $)$ where G is strongly connected and $\left|V_{G}\right|=n$. Define L and d as follows:
$L=\left\{\begin{array}{ll}0 & \text { if } \mid \text { Leak } \mid=0 \\ 1 & \text { if } \mid \text { Leak } \mid \neq 0\end{array} \quad\right.$ and $\quad d= \begin{cases}1 & \text { if } \operatorname{dist}(\text { in }, \text { out })=0 \\ \operatorname{dist(in,~out)~} & \text { if } \operatorname{dist}(\text { in }, \text { out }) \neq 0\end{cases}$
Then \mathcal{M} is unidentifiable if

$$
\underbrace{\mid \text { Leak }\left|+\left|E_{G}\right|\right.}_{\text {\# parameters }}>\underbrace{2 n-L-d}_{\text {\# coefficients }}
$$

The Jacobian

Proposition

$\mathcal{M}=(G,\{i\},\{j\}$, Leak $)$ is locally identifiable if and only if the rank of the Jacobian matrix of its coefficient map is equal to \# parameters.

Example

For $\mathcal{M}=\left(\right.$ Cat $\left._{3},\{3\},\{1\},\{3\}\right)$, the input/output equation is:

$$
\begin{aligned}
& y_{1}^{(3)}+\underbrace{\left(a_{03}+a_{12}+a_{21}+a_{23}+a_{32}\right)}_{c_{2}} \ddot{y}_{1}+\underbrace{\left(a_{03} a_{12}+a_{03} a_{21}+a_{12} a_{23}+a_{21} a_{23}+a_{03} a_{32}+a_{21} a_{32}\right)}_{c_{1}} \dot{y_{1}} \\
& +\underbrace{\left(a_{03} a_{21} a_{32}\right)}_{c_{0}} y_{1}=\underbrace{\left(a_{12} a_{23}\right)}_{d_{0}} u_{3} \\
& J\left(\phi_{\mathcal{M}}\right)=\begin{array}{c}
a_{03} \\
c_{2} \\
c_{1} \\
c_{0} \\
d_{0}
\end{array}\left(\begin{array}{ccccc}
a_{12} & a_{21} & a_{23} & a_{32} \\
1 & 1 & 1 & 1 & 1 \\
a_{12}+a_{21}+a_{32} & a_{03}+a_{23} & a_{03}+a_{23}+a_{32} & a_{12}+a_{21} & a_{03}+a_{21} \\
a_{21} a_{32} & 0 & a_{03} a_{32} & 0 & a_{03} a_{21} \\
0 & a_{23} & 0 & a_{12} & 0
\end{array}\right)
\end{aligned}
$$

Tree Models

Definition

A (bidirectional) tree model $\mathcal{M}=(G, I n$, Out, Leak) has properties

- the edge $i \rightarrow j \in E_{G}$ if and only if the edge $j \rightarrow i \in E_{G}$
- underlying undirected graph of G a [double] tree*

Examples

$$
\text { (1) } \underset{a_{21}}{\stackrel{a_{12}}{\leftrightarrows}}(2) \stackrel{a_{23}}{\stackrel{a_{32}}{\leftrightarrows}} \cdots \stackrel{\substack{a_{n, n-1} \\ \text { Catenary }}}{\stackrel{a_{n-1, n}}{\leftrightarrows}} n
$$

Unidentifiability of Tree Models

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{$ in $\},\{$ out $\}$, Leak $)$ is unidentifiable if $\operatorname{dist}($ in, out $) \geq 2$ or \mid Leak $\mid \geq 2$.

Proof idea: Let $n=\left|V_{G}\right|$.

- \# parameters: $\left|E_{G}\right|+\mid$ Leak $|=2 n-2+|$ Leak \mid

Unidentifiability of Tree Models

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{i n\},\{$ out $\}$, Leak $)$ is unidentifiable if

$$
\operatorname{dist}(\text { in }, \text { out }) \geq 2 \text { or } \mid \text { Leak } \mid \geq 2 .
$$

Proof idea: Let $n=\left|V_{G}\right|$.

- \# parameters: $\left|E_{G}\right|+\mid$ Leak $|=2 n-2+|$ Leak \mid
- \# coefficients:

	\mid Leak $\mid \geq 2$	\mid Leak $\mid=1$	\mid Leak $\mid=0$
dist(in, out) ≥ 2	$2 n-\operatorname{dist}($ in, out $)$	$2 n-$ dist(in, out)	$2 n-\operatorname{dist}($ in, out $)-1$
dist(in, out) $=1$	$2 n-1$	$2 n-1$	$2 n-2$
dist(in, out) $=0$	$2 n-1$	$2 n-1$	$2 n-2$

Unidentifiability of Tree Models

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{i n\},\{o u t\}$, Leak $)$ is unidentifiable if

$$
\operatorname{dist}(\text { in }, \text { out }) \geq 2 \text { or } \mid \text { Leak } \mid \geq 2
$$

Proof idea: Let $n=\left|V_{G}\right|$.

- \# parameters: $\left|E_{G}\right|+\mid$ Leak $|=2 n-2+|$ Leak \mid
- \# coefficients:

	\mid Leak $\mid \geq 2$	\mid Leak $\mid=1$	\mid Leak $\mid=0$
dist(in, out) ≥ 2	$2 n-$ dist(in, out)	$2 n-\operatorname{dist}($ in, out $)$	$2 n-\operatorname{dist}(\mathrm{in}$, out) -1
dist(in, out) $=1$	$2 n-1$	$2 n-1$	$2 n-2$
dist(in, out) $=0$	$2 n-1$	$2 n-1$	$2 n-2$

Top-Left:

- \# parameters $\geq 2 n$ (since \mid Leak $\mid \geq 2$)
- \# coefficients $=2 n-\underbrace{\operatorname{dist}(\text { in, out })}_{\geq 2}$

Unidentifiability of Tree Models

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{i n\},\{$ out $\}$, Leak $)$ is unidentifiable if

$$
\operatorname{dist}(\text { in }, \text { out }) \geq 2 \text { or } \mid \text { Leak } \mid \geq 2 .
$$

Proof idea: Let $n=\left|V_{G}\right|$.

- \# parameters: $\left|E_{G}\right|+\mid$ Leak $|=2 n-2+|$ Leak \mid
- \# coefficients:

	\mid Leak $\mid \geq 2$	\mid Leak $\mid=1$	\mid Leak $\mid=0$
dist(in, out) ≥ 2	$2 n-\operatorname{dist}($ in, out $)$	$2 n-$ dist(in, out)	$2 n-\operatorname{dist}($ in, out $)-1$
dist(in, out) $=1$	$2 n-1$	$2 n-1$	$2 n-2$
dist(in, out) $=0$	$2 n-1$	$2 n-1$	$2 n-2$

Top-Left: UNIDENTIFIABLE

- \# parameters $\geq 2 n$ (since \mid Leak $\mid \geq 2$)
- \# coefficients $=2 n-\underbrace{\operatorname{dist}(\text { in }, \text { out })}_{\geq 2}$

Unidentifiability of Tree Models

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{$ in $\},\{$ out $\}$, Leak $)$ is unidentifiable if

$$
\operatorname{dist}(\text { in }, \text { out }) \geq 2 \text { or } \mid \text { Leak } \mid \geq 2
$$

Proof idea: Let $n=\left|V_{G}\right|$.

- \# parameters: $\left|E_{G}\right|+\mid$ Leak $|=2 n-2+|$ Leak \mid
- \# coefficients:

	\mid Leak $\mid \geq 2$	\mid Leak $\mid=1$	\mid Leak $\mid=0$
dist(in, out) ≥ 2	$2 n-$ dist(in, out)	$2 n-\operatorname{dist}($ in, out $)$	$2 n-\operatorname{dist}($ in, out $)-1$
dist(in, out) $=1$	$2 n-1$	$2 n-1$	$2 n-2$
dist(in, out) $=0$	$2 n-1$	$2 n-1$	$2 n-2$

Bottom-Right:

- \# parameters $=2 n-2($ since \mid Leak $\mid=0)$
- \# coefficients $=2 n-2$

Unidentifiability of Tree Models

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{$ in $\},\{$ out $\}$, Leak $)$ is unidentifiable if

$$
\operatorname{dist}(\text { in }, \text { out }) \geq 2 \text { or } \mid \text { Leak } \mid \geq 2
$$

Proof idea: Let $n=\left|V_{G}\right|$.

- \# parameters: $\left|E_{G}\right|+\mid$ Leak $|=2 n-2+|$ Leak \mid
- \# coefficients:

	\mid Leak $\mid \geq 2$	\mid Leak $\mid=1$	\mid Leak $\mid=0$
dist(in, out) ≥ 2	$2 n-$ dist(in, out)	$2 n-\operatorname{dist}($ in, out $)$	$2 n-\operatorname{dist}($ in, out) -1
dist(in, out) $=1$	$2 n-1$	$2 n-1$	$2 n-2$
dist(in, out) $=0$	$2 n-1$	$2 n-1$	$2 n-2$

Bottom-Right: IDENTIFIABLE???

- \# parameters $=2 n-2($ since \mid Leak $\mid=0)$
- \# coefficients $=2 n-2$

Unidentifiability of Tree Models

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{i n\},\{o u t\}$, Leak $)$ is unidentifiable if

$$
\operatorname{dist}(\text { in }, \text { out }) \geq 2 \text { or } \mid \text { Leak } \mid \geq 2 .
$$

Proof idea: Let $n=\left|V_{G}\right|$.

- \# parameters: $\left|E_{G}\right|+\mid$ Leak $|=2 n-2+|$ Leak \mid
- \# coefficients:

	\mid Leak $\mid \geq 2$	\mid Leak $\mid=1$	\mid Leak $\mid=0$
dist(in, out) ≥ 2	$2 n-\operatorname{dist}($ in, out $)$	$2 n-$ dist(in, out)	$2 n-\operatorname{dist}($ in, out $)-1$
dist(in, out) $=1$	$2 n-1$	$2 n-1$	$2 n-2$
dist(in, out) $=0$	$2 n-1$	$2 n-1$	$2 n-2$

- five red cases have \# parameters > \# coefficients

Unidentifiability of Tree Models

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{i n\},\{o u t\}$, Leak $)$ is unidentifiable if

$$
\operatorname{dist}(\text { in }, \text { out }) \geq 2 \text { or } \mid \text { Leak } \mid \geq 2 .
$$

Proof idea: Let $n=\left|V_{G}\right|$.

- \# parameters: $\left|E_{G}\right|+\mid$ Leak $|=2 n-2+|$ Leak \mid
- \# coefficients:

	\mid Leak $\mid \geq 2$	\mid Leak $\mid=1$	\mid Leak $\mid=0$
dist(in, out) ≥ 2	$2 n-$ dist(in, out)	$2 n-$ dist(in, out)	$2 n-\operatorname{dist}($ in, out $)-1$
dist(in, out) $=1$	$2 n-1$	$2 n-1$	$2 n-2$
dist(in, out) $=0$	$2 n-1$	$2 n-1$	$2 n-2$

- five red cases have \# parameters $>$ \# coefficients \Longrightarrow unidentifiability

Unidentifiability of Tree Models

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{i n\},\{o u t\}$, Leak $)$ is unidentifiable if

$$
\operatorname{dist}(\text { in }, \text { out }) \geq 2 \text { or } \mid \text { Leak } \mid \geq 2 .
$$

Proof idea: Let $n=\left|V_{G}\right|$.

- \# parameters: $\left|E_{G}\right|+\mid$ Leak $|=2 n-2+|$ Leak \mid
- \# coefficients:

	\mid Leak $\mid \geq 2$	\mid Leak $\mid=1$	\mid Leak $\mid=0$
dist(in, out) ≥ 2	$2 n-\operatorname{dist}($ in, out $)$	$2 n-$ dist(in, out)	$2 n-\operatorname{dist}($ in, out $)-1$
dist(in, out) $=1$	$2 n-1$	$2 n-1$	$2 n-2$
dist(in, out) $=0$	$2 n-1$	$2 n-1$	$2 n-2$

- five red cases have \# parameters > \# coefficients \Longrightarrow unidentifiability
- four blue cases have \# parameters = \# coefficients

Unidentifiability of Tree Models

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{i n\},\{o u t\}$, Leak $)$ is unidentifiable if

$$
\operatorname{dist}(\text { in }, \text { out }) \geq 2 \text { or } \mid \text { Leak } \mid \geq 2 .
$$

Proof idea: Let $n=\left|V_{G}\right|$.

- \# parameters: $\left|E_{G}\right|+\mid$ Leak $|=2 n-2+|$ Leak \mid
- \# coefficients:

	\mid Leak $\mid \geq 2$	\mid Leak $\mid=1$	\mid Leak $\mid=0$
dist(in, out) ≥ 2	$2 n-$ dist(in, out)	$2 n-$ dist(in, out)	$2 n-\operatorname{dist}($ in, out $)-1$
dist(in, out) $=1$	$2 n-1$	$2 n-1$	$2 n-2$
dist(in, out) $=0$	$2 n-1$	$2 n-1$	$2 n-2$

- five red cases have \# parameters > \# coefficients \Longrightarrow unidentifiability
- four blue cases have \# parameters = \# coefficients,
but that does not guarantee identifiability.

Building Identifiable Tree Models

Plan for showing that \# parameters = \# coefficients implies identifiability:

- start with some base model that we know is identifiable (Prop*)
- from base model, build all tree models where \mid Leak $\mid \leq 1$ and $\operatorname{dist}($ in, out $) \leq 1$ and retain identifiability at each step

Proposition* (\$, Gross, Meshkat, Shiu, Sullivant [1])

The tree model $\mathcal{M}=(G,\{i\},\{i\}, \emptyset)$ is identifiable.

Building Identifiable Tree Models

Plan for showing that \# parameters = \# coefficients implies identifiability:

- start with some base model that we know is identifiable (Prop*)
- from base model, build all tree models where \mid Leak $\mid \leq 1$ and $\operatorname{dist}($ in, out $) \leq 1$ and retain identifiability at each step

Proposition* (\$, Gross, Meshkat, Shiu, Sullivant [1])

The tree model $\mathcal{M}=(G,\{i\},\{i\}, \emptyset)$ is identifiable.

Proposition (Gross, Harrington, Meshkat, Shiu [2])

Let $\mathcal{M}=(G$, In, Out, $\emptyset)$ be strongly connected and identifiable. Then, the model $\mathcal{M}^{\prime}=(G, I n$, Out,$\{k\})$ is also identifiable.

Moving the Input/Output

Proposition (\$, Gross, Meshkat, Shiu, Sullivant [1])

Let $\mathcal{M}=(G,\{i\},\{i\}, \emptyset)$ be an identifiable tree model. Let H be the graph G with the added node n and edges $i \rightarrow n$ and $n \rightarrow i$. Then following models are also identifiable:

- $\mathcal{M}_{1}=(H,\{i\},\{n\}, \emptyset)$
- $\mathcal{M}_{2}=(H,\{n\},\{i\}, \emptyset)$.

Example

Here, $\mathcal{M}=\left(\operatorname{Cat}_{3},\{1\},\{1\}, \emptyset\right)$ and $\mathcal{M}_{2}=\left(\operatorname{Cat}_{4}^{*},\{4\},\{1\}, \emptyset\right)$:

Proof of Moving the Input/Output

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

Let $\mathcal{M}=(G,\{i\},\{i\}, \emptyset)$ be an identifiable tree model. Let H be the graph G with the added node n and edges $i \rightarrow n$ and $n \rightarrow i$. Then following models are also identifiable:

- $\mathcal{M}_{1}=(H,\{i\},\{n\}, \emptyset)$
- $\mathcal{M}_{2}=(H,\{n\},\{i\}, \emptyset)$.

Proof idea:

- write the coefficients of \mathcal{M}_{1} in terms of \mathcal{M} and the new parameters
- manipulate the Jacobian of $\phi_{\mathcal{M}_{1}}$ to "find" the Jacobian of $\phi_{\mathcal{M}}$, which by assumption has full rank:

$$
J\left(\phi_{\mathcal{M}_{1}}\right)=\left(\begin{array}{cc}
J\left(\phi_{\mathcal{M}}\right) & 0 \\
* & C
\end{array}\right)
$$

- show that C has full rank using properties of the graph

Adding a Leaf

Proposition (\$, Gross, Meshkat, Shiu, Sullivant [1])

Let $\mathcal{M}=(G,\{i\},\{j\}, \emptyset)$ be an identifiable tree model. Define $\mathcal{L}=(H,\{i\},\{j\}, \emptyset)$ where H is the graph G with the added node n and edges $k \rightarrow n$ and $n \rightarrow k$ for some $k \in V_{G}$. Then, \mathcal{L} is identifiable.

Example

Here, $\mathcal{M}=\left(\operatorname{Cat}_{3},\{2\},\{3\}, \emptyset\right)$ and $\mathcal{L}=\left(\operatorname{Cat}_{4}^{*},\{2\},\{3\}, \emptyset\right)$:

Classification of Tree Models

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{i n\},\{o u t\}$, Leak $)$ is identifiable if and only if $\operatorname{dist}($ in, out $) \leq 1$ and \mid Leak $\mid \leq 1$.

Proof outline:

- \mathcal{M} is unidentifiable if either $\operatorname{dist(in,~out)~}>1$ or \mid Leak $\mid>1$
- \mathcal{M} is identifiable if in $=$ out and \mid Leak $\mid=0$
- \mathcal{M} is identifiable if $\operatorname{dist(in,out)=1\text {and}|\text {Leak}|=0~(1)~}$
- if \mathcal{M} is identifiable with \mid Leak $\mid=0$, then it is identifiable with \mid Leak $\mid=1$

Example

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])
A tree model $\mathcal{M}=(G,\{i n\},\{o u t\}$, Leak $)$ is identifiable if and only if $\operatorname{dist}($ in, out $) \leq 1$ and \mid Leak $\mid \leq 1$.

Example

Example

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{$ in $\},\{o u t\}$, Leak $)$ is identifiable if and only if $\operatorname{dist}($ in, out $) \leq 1$ and \mid Leak $\mid \leq 1$.

Example

UNIDENTIFIABLE,

Example

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{$ in $\},\{o u t\}$, Leak $)$ is identifiable if and only if $\operatorname{dist}($ in, out $) \leq 1$ and \mid Leak $\mid \leq 1$.

Example

UNIDENTIFIABLE, since $\operatorname{dist}(3,1)=2>1$

Example

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])
A tree model $\mathcal{M}=(G,\{i n\},\{o u t\}$, Leak $)$ is identifiable if and only if $\operatorname{dist}($ in, out $) \leq 1$ and \mid Leak $\mid \leq 1$.

Example

Example

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{$ in $\},\{o u t\}$, Leak $)$ is identifiable if and only if $\operatorname{dist}($ in, out $) \leq 1$ and \mid Leak $\mid \leq 1$.

Example

IDENTIFIABLE,

Example

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [1])

A tree model $\mathcal{M}=(G,\{i n\},\{o u t\}$, Leak $)$ is identifiable if and only if $\operatorname{dist}($ in, out $) \leq 1$ and \mid Leak $\mid \leq 1$.

Example

IDENTIFIABLE, since $\operatorname{dist}(2,1)=1 \leq 1$ and \mid Leak $\mid=1 \leq 1$.

Conclusion

Theorem

For ALL linear compartmental models, we can generate defining input-output equations from the underlying graph.

Conclusion

Theorem

For ALL linear compartmental models, we can generate defining input-output equations from the underlying graph.

Theorem

For tree models with a single input and output, we completely classify local structural identifiability.

Conclusion

Theorem

For ALL linear compartmental models, we can generate defining input-output equations from the underlying graph.

Theorem

For tree models with a single input and output, we completely classify local structural identifiability.

Remark

Biologists/modelers can use this information to design models which are structurally identifiable in the hope that they are practically identifiable.

Future Work

- generalize results on tree models to other linear compartmental models
- find more applications for new characterization of coefficients
- consider distinguishability, i.e. the problem of determining whether two or more linear compartmental models fit a given set of measured data
- look for patterns in the singular locus for dividing edges
- consider identifiability versus observability relationship
- consider the problem of determining identifiability when multiple inputs/outputs are present

Acknowledgments and References

Thank you to the American Institute of Mathematics (AIM) for providing a productive work environment. This work was partially supported by the US National Science Foundation (DMS 1615660).

显
Cashous Bortner, Elizabeth Gross, Nicolette Meshkat, Anne Shiu, and Seth Sullivant. Identifiability of linear compartmental tree models and a general formula for the input-output equations.
Advances in Applied Mathematics, 146, May 2023.
Elizabeth Gross, Heather A. Harrington, Nicolette Meshkat, and Anne Shiu.
Linear compartmental models: input-output equations and operations that preserve identifiability.
SIAM J. Appl. Math., 79(4):1423-1447, 2019.

Thank you!!!

