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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03 Linear Compartmental Model

M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).
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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03

Directed Graph: G = Cat3

Linear Compartmental Model

M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).
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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03

Input Compartment: In = {3}

Linear Compartmental Model

M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).
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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03

Measured Compartment: Out = {1}

Linear Compartmental Model

M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).
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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03

“Output” Compartment: Out = {1}

Linear Compartmental Model

M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).
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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03

Leak Compartment: Leak = {3}

Linear Compartmental Model

M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).
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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03 Linear Compartmental Model

M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).

Motivating Question: Identifiability

Given information about the input and output compartment[s], can we
recover all flow rate parameters?
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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03 Linear Compartmental Model

M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).

Motivating Question: Identifiability

Given information about the input and output compartment[s], can we
identify all flow rate parameters?
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Compartmental Models in the Wild

• SIR Model for spread of a virus
in Epidemiology (non-linear)

• SIV Model for vaccine
efficiency in Epidemiology

• Modeling Pharmacokinetics for
absorption, distribution,
metabolism, and excretion in
the blood

• Modeling different biological
systems

I

S

R

?
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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03
M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).
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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03
M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).

ODEs in terms of concentrations xi (t), input u3(t), and output y1(t):

ẋ1 = −a21x1(t) +a12x2(t)
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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03
M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).

ODEs in terms of concentrations xi (t), input u3(t), and output y1(t):

ẋ1 = −a21x1(t) +a12x2(t)

ẋ2 = a21x1(t) −(a12 + a32)x2(t) +a23x3(t)
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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03
M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).

ODEs in terms of concentrations xi (t), input u3(t), and output y1(t):

ẋ1 = −a21x1(t) +a12x2(t)

ẋ2 = a21x1(t) −(a12 + a32)x2(t) +a23x3(t)

ẋ3 = a32x2(t) −(a03 + a23)x3(t) +u3(t)
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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03
M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).

ODEs in terms of concentrations xi (t), input u3(t), and output y1(t):

ẋ1 = −a21x1(t) +a12x2(t)

ẋ2 = a21x1(t) −(a12 + a32)x2(t) +a23x3(t)

ẋ3 = a32x2(t) −(a03 + a23)x3(t) +u3(t)

with
y1(t) = x1(t).
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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03
M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).

ODEs in terms of concentrations xi (t), input u3(t), and output y1(t):ẋ1
ẋ2
ẋ3

 =

−a21 a12 0
a21 −a12 − a32 a23
0 a32 −a03 − a23


︸ ︷︷ ︸

compartmental matrix A

x1(t)
x2(t)
x3(t)

+

 0
0

u3(t)



with
y1(t) = x1(t).
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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03
M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).

Goal: Identify the parameters aji from the measurable variables.ẋ1
ẋ2
ẋ3

 =

−a21 a12 0
a21 −a12 − a32 a23
0 a32 −a03 − a23


︸ ︷︷ ︸

compartmental matrix A

x1(t)
x2(t)
x3(t)

+

 0
0

u3(t)



with
y1(t) = x1(t).
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Motivating Example

Goal: Identify the parameters aji from the measurable variables.ẋ1
ẋ2
ẋ3

 =

−a21 a12 0
a21 −a12 − a32 a23
0 a32 −a03 − a23

x1(t)
x2(t)
x3(t)

+

 0
0

u3(t)



with
y1(t) = x1(t).
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Motivating Example

Goal: Identify the parameters aji from the measurable variables.(
∂t 0 0
0 ∂t 0
0 0 ∂t

)(
x1(t)
x2(t)
x3(t)

)
=

(−a21 a12 0
a21 −a12 − a32 a23
0 a32 −a03 − a23

)(
x1(t)
x2(t)
x3(t)

)
+

(
0
0

u3(t)

)

with
y1(t) = x1(t).
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Motivating Example

Goal: Identify the parameters aji from the measurable variables.(
∂t 0 0
0 ∂t 0
0 0 ∂t

)(
x1(t)
x2(t)
x3(t)

)
−

(−a21 a12 0
a21 −a12 − a32 a23
0 a32 −a03 − a23

)(
x1(t)
x2(t)
x3(t)

)
=

(
0
0

u3(t)

)

with
y1(t) = x1(t).
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Motivating Example

Goal: Identify the parameters aji from the measurable variables.((
∂t 0 0
0 ∂t 0
0 0 ∂t

)
−

(−a21 a12 0
a21 −a12 − a32 a23
0 a32 −a03 − a23

))(
x1(t)
x2(t)
x3(t)

)
=

(
0
0

u3(t)

)

with
y1(t) = x1(t).
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Motivating Example

Goal: Identify the parameters aji from the measurable variables.∂t + a21 −a12 0
−a21 ∂t + a12 + a32 −a23
0 −a32 ∂t + a03 + a23

x1(t)
x2(t)
x3(t)

 =

 0
0

u3(t)



with
y1(t) = x1(t).
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Motivating Example

Goal: Identify the parameters aji from the measurable variables.∂t + a21 −a12 0
−a21 ∂t + a12 + a32 −a23
0 −a32 ∂t + a03 + a23

y1(t)
x2(t)
x3(t)

 =

 0
0

u3(t)



with
y1(t) = x1(t).
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Motivating Example

Goal: Identify the parameters aji from the measurable variables.∂t + a21 −a12 0
−a21 ∂t + a12 + a32 −a23
0 −a32 ∂t + a03 + a23

y1(t)
x2(t)
x3(t)

 =

 0
0

u3(t)


via Cramer’s Rule:

det

∂t + a21 −a12 0
−a21 ∂t + a12 + a32 −a23
0 −a32 ∂t + a03 + a23

 y1(t)

= det

 0 −a12 0
0 ∂t + a12 + a32 −a23

u3(t) −a32 ∂t + a03 + a23


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Motivating Example

Goal: Identify the parameters aji from the measurable variables.∂t + a21 −a12 0
−a21 ∂t + a12 + a32 −a23
0 −a32 ∂t + a03 + a23

y1(t)
x2(t)
x3(t)

 =

 0
0

u3(t)


via Cramer’s Rule:

det

∂t + a21 −a12 0
−a21 ∂t + a12 + a32 −a23
0 −a32 ∂t + a03 + a23

 y1(t)

= det

(
−a12 0

∂t + a12 + a32 −a23

)
u3(t)
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Motivating Example

1 2 3
a12 a23

a21 a32

in

a03
M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).

Goal: Identify the parameters aji from the measurable variables.

det(∂t I − A)y1 = det(∂t I − A)(3,1)︸ ︷︷ ︸
remove row 3 and col 1

u3

by Cramer’s Rule and substitution.
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Motivating Example: Input/Output Equation

1 2 3
a12 a23

a21 a32

in

a03
M = (G , In,Out, Leak)

= (Cat3, {3}, {1}, {3}).

Via a substitution and application of Cramer’s Rule:

y
(3)
1 + (a03 + a12 + a21 + a23 + a32)ÿ1 + (a03a12 + a03a21

+a12a23 + a21a23 + a03a32 + a21a32)ẏ1 + (a03a21a32)y1 = (a12a23)u3.

an ODE in only the measurable variables and the parameters:

Input/Output Equation

Goal: Identify parameters aji from the measurable variables.
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Identifiability Analysis: Structural vs. Practical

Overview

We want to recover (identify) parameters of ODE models from measured
variables.

Structural vs. Practical

• structural identifiability analysis, is done a priori, assumes perfect
conditions, and does not provide numerical parameter estimates

• practical identifiability analysis, is done a posteriori, assumes some
error exists, and generally computes parameter estimates from
measured data

Remark

Structural identifiability is a necessary condition for practical
identifiability.
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Identifiability Analysis: Structural vs. Practical

Overview

We want to recover (identify) parameters of ODE models from measured
variables.

Structural vs. Practical

• structural identifiability analysis, is done a priori, assumes perfect
conditions, and does not provide numerical parameter estimates

• practical identifiability analysis, is done a posteriori, assumes some
error exists, and generally computes parameter estimates from
measured data

Remark
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Structural Identifiability Analysis: A two part problem

Structural Identifiability via the input-output equation

We consider structural identifiability as a two-step problem:

1. Find an input/output equation of the ODE system in terms of
measurable variables

2. Determine the injectivity of the coefficient map defined by the
input/output equation

Goal

We want to classify structural identifiability by the underlying graph
structure.
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Structural Identifiability Analysis: A two part problem

Structural Identifiability via the input-output equation

We consider structural identifiability as a two-step problem:

1. Find an input/output equation of the ODE system in terms of
measurable variables

2. Determine the injectivity of the coefficient map defined by the
input/output equation

Goal

We want to classify structural identifiability

by the underlying graph
structure.
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Structural Identifiability Analysis: A two part problem

Structural Identifiability via the input-output equation

We consider structural identifiability as a two-step problem:

1. Find an input/output equation of the ODE system in terms of
measurable variables

2. Determine the injectivity of the coefficient map defined by the
input/output equation

Goal

We want to classify structural identifiability by the underlying graph
structure.
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Novel Input-Output Equation Characterization

Theorem ($, Gross, Meshkat, Shiu, Sullivant [1])

The coefficients of the input-output equation of a LCM (G , In,Out, Leak)
can be generated by incoming forests on graphs related to G .

Definitions

A directed graph H is called an incoming forest if

• no vertex has more than one outgoing edge, and

• its underlying undirected graph is a forest

Example

The set of incoming forests with 3 edges

on G̃ : F3(G̃) = {{1 → 2, 2 → 3, 3 → 0}} 1 2 3 0
a12 a23
a21 a32

a03

G̃
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Example

For M = (Cat3, {3}, {1}, {3}):

1 2 3 0
a12 a23

a21 a32
in

a03

G̃

The kth coefficient of LHS of the
i-o equation is:

ck =
∑

F∈F3−k (G̃)

πF

LHS coefficients: Incoming forests with 1 edge

Derivative Coefficient

y
(3)
1 1

y
(2)
1 a03 + a12 + a21 + a23 + a32

y
(1)
1 a03a12 + a03a21 + a12a23 + a21a23 + a03a32 + a21a32

y
(0)
1 a03a21a32
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Example
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Example

For M = (Cat3, {3}, {1}, {3}):

1 2 3 0
a12 a23

a21X a32
in

a03

G̃ ∗
1

The kth coefficient of RHS of the
i-o equation is:

dk =
∑

F∈F3,1
3−k−1(G̃

∗
1 )

πF

RHS coefficients:

Derivative Coefficient

u
(0)
3
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Example

For M = (Cat3, {3}, {1}, {3}):

1 2 3 0
a12 a23

a32
in

a03

G̃ ∗
1

The kth coefficient of RHS of the
i-o equation is:

dk =
∑

F∈F3,1
3−k−1(G̃

∗
1 )

πF

RHS coefficients: Incoming forests with 2 edges AND a path from 3 to 1

Derivative Coefficient

u
(0)
3
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Example

For M = (Cat3, {3}, {1}, {3}):

1 2 3 0
a12 a23

a32
in

a03

G̃ ∗
1

The kth coefficient of RHS of the
i-o equation is:

dk =
∑

F∈F3,1
3−k−1(G̃

∗
1 )

πF

RHS coefficients: Incoming forests with 2 edges AND a path from 3 to 1

Derivative Coefficient

u
(0)
3 a12a23
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Number of Coefficients

Corollary ($, Gross, Meshkat, Shiu, Sullivant [1])

Consider M = (G , {in}, {out}, Leak) where G is strongly connected and
|VG | = n. Then the number of non-trivial coefficients in the input/output
equation is:

# on LHS =

{
n if |Leak| ̸= 0

n − 1 if |Leak| = 0
, # on RHS =

{
n − 1 if in = out

n − dist(in, out) if in ̸= out.

Example

For M = (Cat3, {3}, {1}, {3}), the input/output equation is:

y
(3)
1 + (a03 + a12 + a21 + a23 + a32)y

′′
1 + (a03a12 + a03a21

a12a23 + a21a23 + a03a32 + a21a32)y
′
1 + (a03a21a32)y1 = (a12a23)u3.

1 2 3 0
a12 a23

a21 a32

in

a03

G̃

# on LHS = 3 (since |Leak| = 1)

# on RHS = 3− dist(3, 1)︸ ︷︷ ︸
2

= 1
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Example

Example

For M = (Cat3, {3}, {1}, {3}), the input/output equation is:

y
(3)
1 + (a03 + a12 + a21 + a23 + a32)ÿ1 + (a03a12 + a03a21

+a12a23 + a21a23 + a03a32 + a21a32)ẏ1 + (a03a21a32)y1 = (a12a23)u3.

1 2 3 0
a12 a23

a21 a32

in

a03

G̃

# on LHS = 3

# on RHS = 1

The coefficient map corresponding to M is:

ϕM : R5 →R4
a03
a12
a21
a23
a32

 7→


a03 + a12 + a21 + a23 + a32

a03a12 + a03a21 + a12a23 + a21a23 + a03a32 + a21a32
a03a21a32
a12a23


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Identifiability

Definition∗

A model (G , In,Out, Leak) with coefficient map ϕ is

• locally identifiable (identifiable) if, outside a set of measure zero,
every point in R|EG |+|Leak| has an open neighborhood U for which the
restriction ϕ|U : U → Rm is one-to-one; and

• unidentifiable if c is generically infinite-to-one.

Proposition (Sufficient condition for unidentifiability)

A model M = (G , In,Out, Leak) is unidentifiable if

# parameters︸ ︷︷ ︸
|EG |+|Leak|

> # coefficients.
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Example
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Unidentifiability

Corollary ($, Gross, Meshkat, Shiu, Sullivant [1])

Consider M = (G , {in}, {out}, Leak) where G is strongly connected and
|VG | = n. Define L and d as follows:

L =

{
0 if |Leak| = 0

1 if |Leak| ≠ 0
and d =

{
1 if dist(in, out) = 0

dist(in, out) if dist(in, out) ̸= 0.

Then M is unidentifiable if

|Leak|+ |EG |︸ ︷︷ ︸
# parameters

> 2n − L− d︸ ︷︷ ︸
# coefficients

.
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The Jacobian

Proposition

M = (G , {i}, {j}, Leak) is locally identifiable if and only if the rank of the
Jacobian matrix of its coefficient map is equal to # parameters.

Example

For M = (Cat3, {3}, {1}, {3}), the input/output equation is:

y
(3)
1 + (a03 + a12 + a21 + a23 + a32)︸ ︷︷ ︸

c2

ÿ1 + (a03a12 + a03a21 + a12a23 + a21a23 + a03a32 + a21a32)︸ ︷︷ ︸
c1

ẏ1

+ (a03a21a32)︸ ︷︷ ︸
c0

y1 = (a12a23)︸ ︷︷ ︸
d0

u3

J(ϕM) =


a03 a12 a21 a23 a32

c2 1 1 1 1 1
c1 a12 + a21 + a32 a03 + a23 a03 + a23 + a32 a12 + a21 a03 + a21
c0 a21a32 0 a03a32 0 a03a21
d0 0 a23 0 a12 0


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Tree Models

Definition

A (bidirectional) tree model M = (G , In,Out, Leak) has properties

• the edge i → j ∈ EG if and only if the edge j → i ∈ EG

• underlying undirected graph of G a [double] tree*

Examples

1 2 . . . n
a12 a23 an−1,n

a21 a32 an,n−1

Catenary

1

2

3

...

n

a21
a12

a13
a31

a1,n
an,1

Mammillary
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Unidentifiability of Tree Models

Theorem ($, Gross, Meshkat, Shiu, Sullivant [1])

A tree model M = (G , {in}, {out}, Leak) is unidentifiable if

dist(in, out) ≥ 2 or |Leak| ≥ 2.

Proof idea: Let n = |VG |.
• # parameters: |EG |+ |Leak| = 2n − 2 + |Leak|

• # coefficients:
|Leak| ≥ 2 |Leak| = 1 |Leak| = 0

dist(in, out) ≥ 2 2n − dist(in, out) 2n − dist(in, out) 2n − dist(in, out)− 1

dist(in, out) = 1 2n − 1 2n − 1 2n − 2

dist(in, out) = 0 2n − 1 2n − 1 2n − 2

Top-Left:

• # parameters ≥ 2n (since |Leak| ≥ 2)

• # coefficients = 2n − dist(in, out)︸ ︷︷ ︸
≥2
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Unidentifiability of Tree Models

Theorem ($, Gross, Meshkat, Shiu, Sullivant [1])
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• # coefficients:
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dist(in, out) = 1 2n − 1 2n − 1 2n − 2
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≥2
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Unidentifiability of Tree Models

Theorem ($, Gross, Meshkat, Shiu, Sullivant [1])

A tree model M = (G , {in}, {out}, Leak) is unidentifiable if

dist(in, out) ≥ 2 or |Leak| ≥ 2.

Proof idea: Let n = |VG |.
• # parameters: |EG |+ |Leak| = 2n − 2 + |Leak|
• # coefficients:

|Leak| ≥ 2 |Leak| = 1 |Leak| = 0

dist(in, out) ≥ 2 2n − dist(in, out) 2n − dist(in, out) 2n − dist(in, out)− 1

dist(in, out) = 1 2n − 1 2n − 1 2n − 2

dist(in, out) = 0 2n − 1 2n − 1 2n − 2

Top-Left: UNIDENTIFIABLE

• # parameters ≥ 2n (since |Leak| ≥ 2)

• # coefficients = 2n − dist(in, out)︸ ︷︷ ︸
≥2
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Unidentifiability of Tree Models

Theorem ($, Gross, Meshkat, Shiu, Sullivant [1])

A tree model M = (G , {in}, {out}, Leak) is unidentifiable if

dist(in, out) ≥ 2 or |Leak| ≥ 2.

Proof idea: Let n = |VG |.
• # parameters: |EG |+ |Leak| = 2n − 2 + |Leak|
• # coefficients:

|Leak| ≥ 2 |Leak| = 1 |Leak| = 0

dist(in, out) ≥ 2 2n − dist(in, out) 2n − dist(in, out) 2n − dist(in, out)− 1

dist(in, out) = 1 2n − 1 2n − 1 2n − 2

dist(in, out) = 0 2n − 1 2n − 1 2n − 2

Bottom-Right:

• # parameters = 2n − 2 (since |Leak| = 0)

• # coefficients = 2n − 2
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Unidentifiability of Tree Models

Theorem ($, Gross, Meshkat, Shiu, Sullivant [1])

A tree model M = (G , {in}, {out}, Leak) is unidentifiable if

dist(in, out) ≥ 2 or |Leak| ≥ 2.

Proof idea: Let n = |VG |.
• # parameters: |EG |+ |Leak| = 2n − 2 + |Leak|
• # coefficients:

|Leak| ≥ 2 |Leak| = 1 |Leak| = 0

dist(in, out) ≥ 2 2n − dist(in, out) 2n − dist(in, out) 2n − dist(in, out)− 1

dist(in, out) = 1 2n − 1 2n − 1 2n − 2

dist(in, out) = 0 2n − 1 2n − 1 2n − 2

Bottom-Right: IDENTIFIABLE???

• # parameters = 2n − 2 (since |Leak| = 0)

• # coefficients = 2n − 2
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Unidentifiability of Tree Models

Theorem ($, Gross, Meshkat, Shiu, Sullivant [1])

A tree model M = (G , {in}, {out}, Leak) is unidentifiable if

dist(in, out) ≥ 2 or |Leak| ≥ 2.

Proof idea: Let n = |VG |.
• # parameters: |EG |+ |Leak| = 2n − 2 + |Leak|
• # coefficients:

|Leak| ≥ 2 |Leak| = 1 |Leak| = 0

dist(in, out) ≥ 2 2n − dist(in, out) 2n − dist(in, out) 2n − dist(in, out)− 1

dist(in, out) = 1 2n − 1 2n − 1 2n − 2

dist(in, out) = 0 2n − 1 2n − 1 2n − 2

• five red cases have # parameters > # coefficients

=⇒ unidentifiability

• four blue cases have # parameters = # coefficients,

but that does not guarantee identifiability.
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Unidentifiability of Tree Models

Theorem ($, Gross, Meshkat, Shiu, Sullivant [1])

A tree model M = (G , {in}, {out}, Leak) is unidentifiable if
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Building Identifiable Tree Models

Plan for showing that # parameters = # coefficients implies identifiability:

• start with some base model that we know is identifiable (Prop*)

• from base model, build all tree models where |Leak| ≤ 1 and
dist(in, out) ≤ 1 and retain identifiability at each step

Proposition* ($, Gross, Meshkat, Shiu, Sullivant [1])

The tree model M = (G , {i}, {i}, ∅) is identifiable.

Proposition (Gross, Harrington, Meshkat, Shiu [2])

Let M = (G , In,Out, ∅) be strongly connected and identifiable. Then, the
model M′ = (G , In,Out, {k}) is also identifiable.
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Moving the Input/Output

Proposition ($, Gross, Meshkat, Shiu, Sullivant [1])

Let M = (G , {i}, {i}, ∅) be an identifiable tree model. Let H be the graph
G with the added node n and edges i → n and n → i . Then following
models are also identifiable:

• M1 = (H, {i}, {n}, ∅)
• M2 = (H, {n}, {i}, ∅).

Example

Here, M = (Cat3, {1}, {1}, ∅) and M2 = (Cat∗4, {4}, {1}, ∅):

1 2 3
a12 a23

a21 a32

in M

1 2 34
a12 a23a14

a21 a32a41

in M2
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Proof of Moving the Input/Output

Theorem ($, Gross, Meshkat, Shiu, Sullivant [1])

Let M = (G , {i}, {i}, ∅) be an identifiable tree model. Let H be the graph
G with the added node n and edges i → n and n → i . Then following
models are also identifiable:

• M1 = (H, {i}, {n}, ∅)
• M2 = (H, {n}, {i}, ∅).

Proof idea:

• write the coefficients of M1 in terms of M and the new parameters

• manipulate the Jacobian of ϕM1 to “find” the Jacobian of ϕM, which
by assumption has full rank:

J(ϕM1) =

(
J(ϕM) 0

∗ C

)
• show that C has full rank using properties of the graph
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Adding a Leaf

Proposition ($, Gross, Meshkat, Shiu, Sullivant [1])

Let M = (G , {i}, {j}, ∅) be an identifiable tree model. Define
L = (H, {i}, {j}, ∅) where H is the graph G with the added node n and
edges k → n and n → k for some k ∈ VG . Then, L is identifiable.

Example

Here, M = (Cat3, {2}, {3}, ∅) and L = (Cat∗4, {2}, {3}, ∅):

1 2 3
a12 a23

a21 a32

inM

1 2 34
a12 a23

a14 a21 a32

a41

inL
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Classification of Tree Models

Theorem ($, Gross, Meshkat, Shiu, Sullivant [1])

A tree model M = (G , {in}, {out}, Leak) is identifiable if and only if
dist(in, out) ≤ 1 and |Leak| ≤ 1.

Proof outline:

• M is unidentifiable if either dist(in, out) > 1 or |Leak| > 1

• M is identifiable if in = out and |Leak| = 0

• M is identifiable if dist(in, out) = 1 and |Leak| = 0

• if M is identifiable with |Leak| = 0, then it is identifiable with
|Leak| = 1
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Example

Theorem ($, Gross, Meshkat, Shiu, Sullivant [1])

A tree model M = (G , {in}, {out}, Leak) is identifiable if and only if
dist(in, out) ≤ 1 and |Leak| ≤ 1.

Example

1 2 3

a12 a23

a21 a32

in

a03
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Example

Theorem ($, Gross, Meshkat, Shiu, Sullivant [1])

A tree model M = (G , {in}, {out}, Leak) is identifiable if and only if
dist(in, out) ≤ 1 and |Leak| ≤ 1.

Example

1 2 3

a12 a23

a21 a32

in

a03

UNIDENTIFIABLE,

since dist(3, 1) = 2 > 1
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Example

Theorem ($, Gross, Meshkat, Shiu, Sullivant [1])

A tree model M = (G , {in}, {out}, Leak) is identifiable if and only if
dist(in, out) ≤ 1 and |Leak| ≤ 1.

Example

1 2 3

a12 a23

a21 a32

in

a03

IDENTIFIABLE, since dist(2, 1) = 1 ≤ 1 and |Leak| = 1 ≤ 1.
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Example

Theorem ($, Gross, Meshkat, Shiu, Sullivant [1])

A tree model M = (G , {in}, {out}, Leak) is identifiable if and only if
dist(in, out) ≤ 1 and |Leak| ≤ 1.

Example

1 2 3

a12 a23

a21 a32

in

a03

IDENTIFIABLE, since dist(2, 1) = 1 ≤ 1 and |Leak| = 1 ≤ 1.
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Conclusion

Theorem

For ALL linear compartmental models, we can generate defining
input-output equations from the underlying graph.

Theorem

For tree models with a single input and output, we completely classify
local structural identifiability.

Remark

Biologists/modelers can use this information to design models which are
structurally identifiable in the hope that they are practically identifiable.
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Future Work

• generalize results on tree models to other linear compartmental
models

• find more applications for new characterization of coefficients

• consider distinguishability, i.e. the problem of determining whether two
or more linear compartmental models fit a given set of measured data

• look for patterns in the singular locus for dividing edges
• consider identifiability versus observability relationship

• consider the problem of determining identifiability when multiple
inputs/outputs are present
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